MOSCOW
EXCHANGE

e I

ASTS Connectivity AP

Application programming interface
for connecting external systems to the

Moscow Exchange ASTS trading &
clearing system

(MTESRL library v. 4.4)

© Moscow Exchange, 2022

TABLE OF CONTENTS

INTRODUGCTION .t tttutttt ettt ettt e et e e e e e e e e e e e e ae e e e e e e e e eeaneneananeanens 3
M T E S R L LIBRARY .eittttt ettt e e e e e e e e e et e e e e e e e e e e neaneneenens 3
HARDWARE AND SOFTWARE REQUIREMENTS ...uiuiuiritiiieieeeenenensnsnsasenens 3
VNV ORK SCENARIOD ..ttt ettt eeneaneaneaneaneaneaneanes 4
CONNECTION TO THE SERVER ..tttutttee et ettt et eeeaeeaeeeeaeeeananeaeeneananennns 4
CONNECTING TOASTS BIHAQE ...evvviiiee e 4
SELECTING THE LIST OF BOARD S . ettt ettt ettt et ettt et eaeaeaeaeaeaearaeaearaeararararararararaenen 9
GETTING SYSTEM AND SERVICE INFORMATION .. vt ieteeieeeeee e eneananenens 10
BRIDGE SERVER DETAILS .vuueeeeteee ettt e e e e eeeeaeeeeeeeaeeeeesteeseeeeetnseeeeanneeeeennanees 10
BRIDGE CLIENT LIBRARY VERSION ..uvututttttettneeteseeasesensasensasasensasassnsasassnsaeanenes 11
GETTING CONNECTION STATUS « .. teeteeeeeeeteeeeeeeeteeeeeeaeaeeeeeeseaeeseeeseneeeeesnaneeeeens 11
GETTING CONNECTION ST AT ST C S cututt ittt ee e et ee e et ee e ea e eaeae e raraeaanens 12
GETTING DESCRIPTION OF INFORMATION OBJECTS i viitiieeeneeeiieanenennns 13
WORKING WITH INFORMATION OBJIECT S e vttt eteeeeeneeneeneeneeneeneeneaneeneenes 15
TRANSACTIONS EXECUTION ...ttt e e e e et e e e eeeeeee e e eeeeeeeeeeeeeeeeeteeeeeeeneeeeeennnns 15
WV ORKING WITH TABLE S . ettt ttt et ettt eeeee e aeee e eaeen e e e eeaaeaeentaeaeenraeaeenraraeenraeanenes 19
OPENING A tADIE........eeiii i 19
RequeSst fOr UPAALecoovviiiiiiiiiiiiiiieeeeeeee e 20
ClosiNg the tableiiii e 21
EXAMPIE ..o 21
Notes on working with tables ... 22
MEMORY USE OPTIMIZATION ..ttt ettt teeeeeeeeeeaeeeaeeneaeeneaeeneaeeneneanenes 23
RECOVERY AFTER FAILURES AT ASTS BRIDGE SERVERcvvvvvviaennns. 24
BACKING UP BRIDGE INTERNAL STRUCTURE .. vttt ettt ettt eeanans 24
BRIDGE INTERNAL STRUCTURE RECOVERY .. .cuitt it e ee e e e eaeaneanenenn 26
EXAMPLE OF RECOVERY AFTER THE FAILURE ...uiuieii ettt 28
SELECTIVE OPEN OF TABLES FROM THE SNAPSHOT . cutuiteee et eeeeeeeeeaeneneeanns 29
CLOSING CONNECTION SESSION ..uuenee e e eeeae e e aeaeaeaens 31
E R RO R ME S S AGE S . vttt ittt ettt et ettt e et e e et e e e e e eneaneeneaneaneaneenes 31
=y = (0] = o0] 5] =1 TR 32
APPENDIX 1. BUFFER FORMAT OF THE MTESTRUCTURE,
MTESTRUCTUREZ2 AND MTESTRUCTUREEX FUNCTIONSccvvvvvenennens 34
APPENDIX 2. BUFFER FORMAT OF THE MTEOPENTABLE FUNCTION..... 37
APPENDIX 3. BUFFER FORMAT OF THE MTEREFRESH FUNCTION 38
APPENDIX 4. BASIC TY PES .ttt ittt et eeeeneeneaneaneanes 38

APPENDIX 5. FORMATTING OF A TABLE DATA RECEIVED FROM THE TRADING
S ST 1 =Y TP 39

© Moscow Exchange, 2022

INTRODUCTION

ASTS Connectivity API should be used to connect any types of external systems to the Moscow Exchange
ASTS trading & clearing system. These could be: brokerage systems, market data distribution systems,
backoffice applications, HFTs and other client software.

System architecture is shown on the following diagram:

/ Trading network

ERE- B -G8

~

Trading & Clearing Bridge Monitoring
Engine Gateways Server
\ ASTSBridge.exe /
Bridge Client mtesrl.dll / libmtesrl.so
(brokerage system) /

N N [|

End users

This document details creation of client applications using the ASTS Connectivity API.
All the required functions are included into the MTEStI library.

MTESRL library

MTESTrI library provides bidirectional connection to the ASTS trading & clearing system (TS) and
contains functions for both receiving data from TS (general market data such as trades, quotes, financial
instruments as well as company specific trading and clearing information) and executing transactions
(order entry and withdrawal). Library supports all the Moscow Exchange markets powered by the ASTS
platform:

Equity & bond, FX and precious metals, money (loans and deposits) markets.

HARDWARE AND SOFTWARE REQUIREMENTS
MTESTI library is compatible with the following operating systems:

e Windows 10 or Windows 2016/2019, 32 or 64 bit (ntesr1[64] .d11);

e Linux OS family, 64 bit (1ibmtesrl. so). Note: The cdecl calling convention is used.
There are two versions of MTESRL library which differ in way of connection to TS:

e Connection to the trading system through ASTS Bridge (using TCP/IP protocol);

e Direct connection to the trading system. This version of library can only be used at the co-
location facility.

Minimal hardware requirements for MTESRL.:

© Moscow Exchange, 2022

e CPU: Intel Core or compatible 1.4GHz or higher. 3GHz x4 core is recommended.
e RAM - 4GB or more. 16GB is recommended.
e HDD with 10 GB free space for logging.

e Ethernet network card.

WORK SCENARIO
The typical work scenario is as follows:
1. Connect to the server.
2. Download the information object metadata (types, tables and transactions).
3. Open and refresh tables. Send transactions.
4. Save snapshots (optional).
5. Close the connection.

There are interface modules for library as well as MS Visual C, Java, Delphi and C# samples in the Demo
subdirectory of installation folder.

CONNECTION TO THE SERVER

CONNECTING TO ASTS Bridge

MTEConnect function is used to connect to the trading/clearing system through the ASTS Bridge Server.
This function should be called before proceeding to any other library functions.

C++

int32 WINAPI MTEConnect (char *Params, char *ErrorMsgqg);

Pascal

function MTEConnect (Params, ErrorMsg: LPSTR): Integer; stdcall;

Arguments:
Params

Connection parameters. This is a pointer to an ASCIIZ-string, which contains the list of
parameters separated with the “end of line” and “carriage return” symbols (0x0D, 0x0A) with the
following syntax:

Parameterl=Valuel

Parameter2=Value?2
ParameterN=ValueN

Denominations of parameters and their possible values depend on the method of connection of a
specific library to the trading system. The following parameters are available for the MTESRL
library:

CONNECTING TO ASTS BRIDGE

HOST List of comma-separated IP addresses with ports of the ASTS Bridge
server; for example: “194.186.240.85:20006,194.186.240.73:20006”.

PREFERREDHOST | Preferred host address. If not defined, server with the smallest number
of users from the “HOST” list is used.

SERVER Server ID, for example: “EQ TEST”.

USERID User ID in the trading/clearing system.

PASSWORD User password in the trading/clearing system.

INTERFACE Trading system interface ID. For example, “IFCBroker 26"
BOARDS List of trading boards that user is going to work with; for example:

© Moscow Exchange, 2022

“TQBR,TQOB,PSEQ” (this is an optional parameter, if not defined, all
boards are available).

COMPRESSION Compression of transmitted data:
“0” — no compression;
“1” — ZLIB compression;
“2” — compress large network packets with BZIP.
1 is used by default. Support for BZIP may be removed in future.

Encryption and digital signature "Validata" configuration

Signing - constant value:
Validata

Signing.ProfileName - cryptographic “Validata” library profile name (optional; if
not defined then neither digital signature nor encryption will be used); the old PROFILENAME
parameter is still supported,;

The profile name must be prefixed by one the following:

xpki: to use qualified certificates (GOST) with Validata CSP version 5;

zpki: to use qualified certificates (GOST) with Validata CSP version 6;

rpki: to use not qualified certificates (RSA).
E.g.. if the (digital signature profile is named DefaultGost, then
Signing.ProfileName=zpki:DefaultGost parameter should be defined.

Signing.InitFlags - a combination of Validata initialization flags (optional):

1 - Do not update the list of recalled certificates (CRL) at initialization;
4 - Do not use network directories;

Signing.Type, Signing.BasePath and Signing.LdapPath - another method to
initialize Validata. It could be useful when Validata has been installed with another user’s system
account — for example, when the client application is started as a service. In such situation there
will be no profile name in user’s registry branch and the ProfileName could not be used. Values
for these parameters should be taken from the appropriate user’s branch in the system registry:

Signing. Type - type of the crypto-provider being used:
Validata CSP - Validata CSP crypto-provider (zpkil.dll/xpkil.dll);
Microsoft CSP - Microsoft crypto-provider for non-residents (rpkil.dll);

Signing.BasePath - take file path from the registry key, corresponding to the
profile (N=0,1,2...):

HKEY_CURRENT_USER\Software\Validata\xpki\Profiles\<N>\store_0
(\Validata CSP version 5)

HKEY_CURRENT_USER\Software\Validata\zpki\Profiles\<N>\store_0
(\Validata CSP version 6)

HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_0
(Microsoft CSP)

E.g., if
«pse://signed/C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST CRYP
T\local.pse» Value is stored in registry key, you should specify

«C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST CRYPT\» in this
parameter.

Signing.LdapPath is stored in registry key:
HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_2

© Moscow Exchange, 2022

Channel encryption configuration

ASTSBridge version 4.4.0 and higher supports TLS 1.2 channel encryption. Validata
CSP version 6 and higher does not support channel encryption. Encryption and digital signing
can be switched on/off separately.

Encrypt - channel encryption algorithm:

<empty> - do not use channel encryption;
OpenSSL - use TLS 1.2 for channel encryption;

Validata - use Validata CSP for channel encryption in packet mode. The
Encrypt.ProfileName= parameter should be also specified. This
mode is extremely slow and should not be used in production
environment;

Any - if TLS 1.2 protocol is supported then use TLS 1.2. Otherwise, if
Validata digital signature is turned on then use Validata CSP
(either in channel or packet encryption mode). Otherwise, do not
use channel encryption;

Parameter is not specified - if Validata digital signature is turned on
and TLS 1.2 protocol is supported then use TLS 1.2, otherwise, use
Validata CSP (either in channel or packet encryption mode). If
Validata signature is turned off then do not use channel encryption.

It is recommended to use the Encrypt=Any parameter if channel encryption is required.

Encryption and digital signature «TUMAR» configuration

You need to install “Validata certificate store” software to work with TUMAR crypto-
provider. You should configure two profiles there: one for digital signature and other for
encryption. Refer to “Using TUMAR keys in ASTSBridge.pdf” manual for software installation
and configuration instructions.

Signing, Encrypt - constant value:
Validata
Signing.ProfileName - «Validata» profile name for digital signature (optional, if
not defined then digital signature will not be used).
Encrypt.ProfileName - «Validata» profile name for encryption (optional, if not

defined then encryption will not be used).

rpki: prefix should be used before profile name in both parameters. E.qg.: if the digital
signature profile is named TUMAR_SIGN, then
Signing.ProfileName=rpki: TUMAR_SIGN parameter should be defined.

Signing.InitFlags, Encrypt.InitFlags - a set of initialization flags (optional):

1 - Do not update the list of recalled certificates (CRL) at initialization;

Signing.Type, Signing.BasePath,

Encrypt. Type, Encrypt.BasePath - another method to initialize TUMAR. It could be
useful when “Validata certificate store” software has been installed with another user’s system
account — for example, when the client application is started as a service. In such situation there
will be no profile name in user’s registry branch and the ProfileName could not be used. Values
for these parameters should be taken from the appropriate user’s branch in the system registry:

Signing.Type, Encryption.Type - constant value:
Microsoft CSP

© Moscow Exchange, 2022

Signing.BasePath, Encryption.BasePath - take file path from the registry key,
corresponding to the profile N =0,1,2...):
HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_0
E.g., if
«pse://signed/C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST CRYP
T\local.pse» Value is stored in registry key, you should specify

«C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST CRYPT\» in this
parameter.

CONNECTING VIA «kEMBEDDED» BRIDGE AT COLOCATION FACILITY

SERVER Trading system server name, e.g., <GATEWAY ».

SERVICE Trading system service name, e.g., «gateway». Port numbers may be
specified instead, e.g. 18011/18012.

BROADCAST Broadcast address for the server search to access the trading system,

e.g., «10.63.1.255,10.63.3.255,10.61.1.255,10.61.3.255».

PREFBROADCAST | Preferred broadcast server address.

USERID Client user ID in trading/clearing system.

PASSWORD User password in trading/clearing system.

INTERFACE ID of the bridge interface to work with.

BOARDS List of boards that the user is going to work with; for example:

“TOBR, TQOB,PSEQ” (this is the optional parameter; if not defined,
all boards are available).

CACHEFOLDER Directory for caching interface description, downloaded from trading
system. If this parameter is not defined, caching is not performed, and
interface is downloaded from trading system at each connection.

LOGLEVEL Level of internal logging:
“0” — logging is disabled (default value);
“1“—*30* — logging level.

COMPRESSION Compression:
“0” — no compression;
“1” — compression is enabled (default value).

IPSRCORDER List of IP addresses of network interfaces that are allowed to connect to
Trading System. The order of IP addresses in the list defines the
priority. If RestrictList=0, connection attempts from all other addresses
are allowed, but with a lower priority. If RestrictList=1, only attempts
from specified addresses are available, €.9.“192.168.126.1,
192.168.56.1”.

RESTRICTLIST “0“ — searching for gateways is allowed from all available network
interfaces (default value);

“1* — searching for gateways is allowed only from interfaces, listed in
IpSrcOrder attribute.

DIRECTCONNECT | “0” — use server UDP discovering (default value);
“1” - do not use server UDP discovering, connect directly to Broadcast
addresses via TCP.

ALSO, IN ALL OF THE CASES THE FOLLOWING PARAMETERS ARE SUPPORTED:

TIMEOUT Server (i.e. trading system) request execution timeout. For mtesrl.dll —
in milliseconds, for embedded mtesrl.dll — in seconds. Default value is
30 seconds. If reply from server is not received within specified time,
the reconnection procedure will be initiated. If connection interrupt is
registered before the timeout expire — reconnection procedure will
begin earlier.

LOGGING String in the format “N,M”, where first digit “N” — API MTESRL calls

© Moscow Exchange, 2022

logging level.

“0” — no logging (do not create log-file);

“1” — log errors only;

“2” —log library function calls;

“3” — log contents of table;

“4” — log contents of table and field numbers;

“5” - log TSMR protocol messages (only for embedded version).
Second digit “M” — connection statistics logging level. Statistics is
stored in a separate file formatted «mtesrl-YYYMMDD-<userid>-
stats.log».

“0” — do not collect statistics;

“1” — collect statistics on query execution time and the trading system
response size;

“2” - Collect statistics and requests distribution on requests to the
tables.

Default value for logging is 2,2.

For a complete logging disabling, use “LOGGING=0,0"

Log files are kept for 7 calendar days. All the older logs are deleted
when the MTEConnect function is called.

KEEPLOGS Number of days to keep the log-files (7 by default). Value “0” means
do not delete old log-files.
RETRIES Number of attempts to reconnect after the loss of connection with

ASTS Bridge Server (10 by default).

CONNECTTIME

Maximum reconnect time. For mtesrl.dll — in milliseconds, for
embedded mtesrl.dll — in seconds. Default is 1 minute. Any value
between 5 and 300 sec. can be specified. Reconnection lasts not more
than [RETRIES] attempts and no longer than [CONNECTTIME] ms,
depending on which event comes first. This value is approximate and
may differ from a real one for several seconds.

LOGFOLDER A folder to store the log files. By default, library folder is used.

LOGPREFIX Specify unique string prefix to differentiate log-file names when
connecting to several trading systems with the same user identifier.

FEEDBACK Free formatted text string, describing the client system, connected to
the bridge. For example, «FondAnalytic v3.5.456, e-mail:
admin@fondru.ruy.

LANGUAGE Specify the language for messages issued by the Bridge and MTESRL
client library. To change the language wuse transaction
CHANGE_LANGUAGE. Possible values are “Russian” and
“English”.

TRANSPORT Transport library name: TSMR or Mustang. If not specified, TSMR is
used.

JUMBOSIZE The parameter can be used with Mustang transport only. Turns on large
data packets received from Trading System.

“0” — 60000 (use standard packet size), default value;
“1” — 128KB;
“2” _256KB;
“3” — 512Kb.
ErrorMsg

A pointer to a buffer of at least 256 bytes to store error description, in case an error occurs.

Returned value:

If connection is successful, the function returns a descriptor of the established connection (value
that is greater or equal to MTE_OK). The received connection descriptor is used during
execution of all MTExxxx functions.

If error occurs, one of the MTE_xxxx error codes is returned and error description is placed to

ErrorMsg argument.

© Moscow Exchange, 2022

Example:
Connect to the ASTS Bridge server.

C++

int32 Idx;
char ErrorMsg[255];

Idx = MTECOnneCt(“HOST=192.168.0.lO:15005\rSERVER=EQ_TEST\r
USERID=MUOOOOlOOOOl\rINTERFACE=IFCBrOker_26”, ErrorMsqg) ;
if (Idx < MTE OK)
{
fprintf (stderr, “Error while establishing the connection: %s”,
ErrorMsgqg) ;
exit (1) ;

}
else

fprintf (stdout, “Connection established.”);

Pascal

Idx: Integer;
ErrorMsg: TMTEErrorMsg;

Idx := MTEConnect('HOST=192.168.0.10:15005'#13#10'SERVER=EQ_TEST'
#13#10'USERID=MU0000100001'#13#10'INTERFACE=IFCBroker_26',
@ErrorMsqg) ;
if Idx < MTE OK then
begin
Writeln (Error while establishing the connection: ' + ErrorMsq);
Halt;
end
else
Writeln ('Connection established.');

SELECTING THE LIST OF BOARDS

Usually, the list of boards is defined in “BOARDS=" parameter, when calling MTEConnect function.
But also can be selected later, using MTESelectBoards. It’s allowed to use only one method of these
two for selecting boards. After calling MTESelectBoards, close all the tables and open them again,
because all the tables content depends on selected boards.
C++
int32 WINAPI MTESelectBoards (int32 Idx, char * BoardsList,

char *result);

Pascal

function MTESelectBoards (Idx: Integer; BoardList: LPSTR;
ResultMsg: LPSTR): Integer; stdcall;

ApPIryMEHTBL:
Idx

A descriptor of connection, for which, the data should be received.
BoardList

A pointer to the string, containing a list of boards' identifiers, separated by comma. For example,
“TQBR, TQNE,RPMA”.

ResultMsg

A pointer to a buffer of at least 256 bytes to store the text string with transaction result in case of
successful execution.

Returned value:

If the transaction has been processed by the trading system, it returns the following:

© Moscow Exchange, 2022

10

MTE_OK - boards selected;

MTE_TRANSREJECTED - request has been processed, but rejected by the trading
system (an invalid board specified, no rights to perform, etc.);

MTE_TSMR - fatal error occurred, when executing the query (the loss of connection
with the trading system, etc.).

A text string with query result is placed into ResultMsg argument.

If error occurs, one of the MTE_xxxx error codes is returned. In this case a value of ResultMsg is
not defined.

GETTING SYSTEM AND SERVICE INFORMATION

BRIDGE SERVER DETAILS
To get additional details about the server side of ASTS Bridge, use MTEGetServInfo function.

C++
int32 WINAPI MTEGetServInfo (int32 Idx, char ** ServInfo, int *Len);
Pascal
function MTEGetServInfo (Idx: Integer; var ServInfo: LPSTR;
var Len: Integer): Integer; stdcall;
Arguments:
ldx
A descriptor of connection, for which, the data should be received.
Servinfo
A pointer to a buffer to store returned values.
Len
A pointer to a variable to store the length of returned data.
Returned value:

If successful, MTE_OK is returned and Servinfo points to a buffer of the following structure:

Field Data type | Length, | Description
(IBM PC) | bytes
Connected_To_ASTS INTEGER | 4 Connection status.

Possible values:

0 — not connected;

1 - connected to production environment;

2 - connected to test environment;

-1 — connected to production environment, test
trading session is in progress.

Session_Id INTEGER | 4 Current trading session internal ID. Changes each
session.
ASTS_Server_Name CHAR 33 Access server logical name. For example,

GATEWAY, FOND_GATEWAY, etc. Can be used to
identify a market and type of the system (test or
production).

Version Major CHAR 1 ASTS Bridge major version number.

Version_Minor CHAR 1 ASTS Bridge minor version number.

Version_Build CHAR 1 ASTS Bridge build number.
This and two previous fields identify the version as
Major.Minor.Build.

Beta_version CHAR 1 ASTS Bridge beta version flag. If not 0, then, this is
beta version with a corresponding number.

Debug_flag CHAR 1 ASTS Bridge debug version flag. If not 0, then this is

a debug version.

© Moscow Exchange, 2022

11

Test_flag CHAR 1 ASTS Bridge test release flag. If not O then, this is a
test version.

Start_Time INTEGER | 4 Session start time (defined in the Bridge
configuration). Specified as HHMMSS. Note that this
is the integer.

Stop_Time_Min INTEGER | 4 Bridge shutdown time (defined in the Bridge
configuration). Specified as HHMMSS. Note that this
is the integer.

Stop_Time_Max INTEGER | 4 Equals to Stop_Time Min.

Next_Event INTEGER | 4 Next expected event in the server schedule. Possible
values:
0 — waiting for a new trading session startup;
1 — waiting for a current trading session end.

Event_Date INTEGER | 4 Date of an expected event as DDMMYYYY.
Note that this is the integer.

BoardsSelected ASCIIZ variable | Comma separated list of selected trading boards.

string

UserID CHAR, 13 User ID used by the server for current connection.

null
terminated
string
Systemld CHAR 1 Trading system type:
“P” — equities & bonds or money market;
“C” — FX market;
“F” — derivatives market.
Serverlp ASCIIZ variable | Gateway IP, e.g., «195.1.3.51».
string

If error occurs, one of the MTE_xxxx error codes is returned.

BRIDGE CLIENT LIBRARY VERSION

MTEGetVersion function is used to get the client library version number.

C++

char * WINAPI MTEGetVersion () ;

Pascal

function MTEGetVersion:

Arguments:
none
Returned value:

LPSTR;

stdcall;

A pointer to an ASCIIZ string containing a text description of client library version. For example:
“MTESrl library 3.8.93”.

GETTING CONNECTION STATUS

To obtain the current status of connection to ASTS Bridge server, MTEConnectionStatus function

should be used.

© Moscow Exchange, 2022

12

C++
int32 WINAPI MTEConnectionStatus (int32 Idx);
Pascal
function MTEConnectionStatus (Idx: Integer): Integer; stdcall;
Arguments:
ldx
A descriptor of connection, for which, the data should be received.

Returned value:

One of the following MTE_xxx codes:

MTE_OK Connection established.
MTE_INVALIDCONNECT | Invalid connection descriptor.
MTE_SRVUNAVAIL ASTS Bridge server is not available.
MTE_TEUNAVAIL Trading system is not available.

GETTING CONNECTION STATISTICS

To obtain a statistical data on the connection (connection flags, amount of transferred data, etc.)
MTEConnectionStats function can be used.

C++
int32 WINAPI MTEConnectionStats (int32 Idx, ConnectionStats * Stats);
Pascal++

function MTEConnectionStats (Idx: Integer; var Stats: TMTEConnStats) :
Integer; stdcall;

ldx
A descriptor of connection, for which, the data should be received.

© Moscow Exchange, 2022

Returned value:

13

In case of success function returns MTE_OK and fills the Stats structure by statistical data on the
connection. Stats structure has the following format:

Size int32 Input field, must be filled sizeof (Stats) .

Properties uint32 Connection flags, combination of values
ZLIB_COMPRESSED, FLAG_ENCRYPTED,
FLAG_SIGNING_ON.

SentPackets uint32 Number of packets, sent to ASTS Bridge server.

RecvPackets uint32 Number of packets, received from ASTS Bridge server.

SentBytes uint32 Number of bytes, sent to ASTS Bridge server, considering
compression.

RecvBytes uint32 Number of bytes, received from ASTS Bridge server,
considering compression.

ServerlpAddress uint32 ASTS Bridge server IP-address.

ReconnectCount uint32 Number of reconnections to ASTS Bridge server.

SentUncompressed | uint32 Number of bytes, sent to ASTS Bridge server, not taking
compression into account.

RecvUncompressed | uint32 Number of bytes, received from ASTS Bridge server, not
taking compression into account.

ServerName char[64] | ASTS Bridge server identifier.

TsmrPacketSize uint32 Size of packet of TSMR protocol, bytes (only for colocation
version).

TsmrSent uint32 Number of bytes, sent to TS via TSMR protocol (only for
colocation version).

TsmrRecv uint32 Number of bytes, received from TS via TSMR protocol (only

for colocation version).

If error occurs, one of the MTE_xxxx error codes is returned.

GETTING DESCRIPTION OF INFORMATION OBJECTS

Information objects description contains a list of tables, transactions, their fields and some additional
objects, available to the client. MTEStructure, MTEStructure2 and MTEStructureEx functions
are used to get the description. MTEStructure? and MTEStructureEx functions return an expanded
set of trading system objects characteristics (see Appendix 1).

MTEStructureEx completely covers all the capabilities of two other functions: MTEStructure call
is similar to MTEStructureEx call with Version=0 attribute, MTEStructure?2 call is similar to
MTEStructureEx call with Version=2 attribute.

C++

int32 WINAPI MTEStructure (int32 Idx, MTEMsg **Msqg) ;
int32 WINAPI MTEStructure2 (int32 Idx, MTEMsg **Msqg) ;
int32 WINAPI MTEStructureEx (int32 Idx, int32 Version, MTEMsg **Msq) ;

Pascal

function MTEStructure (Idx:
function MTEStructure2 (Idx:

function MTEStructureEx (Idx:
PMTEMsg) : Integer;

© Moscow Exchange, 2022

Integer; var Msg: PMTEMsg): Integer; stdcall
Integer; var Msg: PMTEMsg) :Integer;stdcall;

Integer; Version: Integer; var Msg:

stdcall;

14

Arguments:
Idx

A descriptor of connection, for which, the data should be received.
Version

[Only for MTEStructureEx]. The version of the information objects description. Possible
values are in range from 0 to 5. The higher the value is, the more detailed description will be
received.

Starting from version 3 this argument allows to get additional information about the trading
system interface. Below are the supported value options. They can be combined with each other
and with the version number using the binary OR operator.

Version | Option Description
>=3 SBRBJlCOEURE_LOCAUZAT'ON The ‘title’ and the ‘description’ fields will be provided
= 0x

on all the supported languages. Instead of the String
field type the following structure will be used:

NumberOfLanguages Integer
Stringl String
String?2 String
StringN String

Each string will start with one of the language prefixes,
such as ‘ru:’, ‘en:” or ‘uk:’. For example, ‘ru:Homep
3asBku’, ‘en:Order number'.

Msg

An address of a variable (of the type “a pointer to a TMTEMsg/MTEMSG”) to store a pointer to
the buffer, containing information objects description. Memory for this buffer is allocated by the
library. Buffer format for MTEStructure and MTEStructure2 functions is described in
Appendix 1. TMTEMsg structure is defined as follows:
C++
typedef struct {

int32 t Datalen; // The length of the data to follow

char Datal[l]; // Pseudo variable
} MTEMSG;

// data of the Datalen length directly follows this structure.

Pascal

PMTEMsg = ~TMTEMsg;

TMTEMsg = record
Datalen: Integer; // The length of the data to follow
Data: record end; // Variable length data

end;

Returned value:

In case of success, function returns MTE_OK and places a buffer with the description to Msg
argument.

If error occurs, one of the MTE_xxxx error codes is returned. If MTE_TSMR error code is

returned, then the data field of Msg structure contains the error message of [DatalLen] length.
Example:

Get the description of available information objects for the Idx session.

C++

int32 Idx; // Initiated by the MTEConnect

char ErrorMsg[255];

MTEMsg *Msg;
char *Data;

© Moscow Exchange, 2022

int32 err;

if ((err = MTEStructure (Idx, &Msg)) != MTE OK) {

if (Err == MTE_TSMR) {

Data = (char *) (Msg + 1);

fprintf (stderr, “Error: %$s\n”, Data);
} else

fprintf (stderr, “Error: %$s\n”, MTEErrorMsg (Err)) ;

} else
fprintf ("Information objects description has been
received.\n”) ;

Data = (char *) (Msg + 1); // Actual data
Pascal
Idx: Integer; // Initiated by the MTEConnect

Err: Integer;
Msg: PMTEMsg;

S: string;

Data: PAnsiChar;

Err := MTEStructure (Idx, Msqg)
if Err <> MTE OK then
if Err = MTE TSMR then begin
SetString (S, @Msg.Data, Msg.Datalen) ;

Writeln ('Error: ' + S);
end else
Writeln ('Error: ' + MTEErrorMsg(Err))
else

Writeln (Information objects description has been received.);

Data := @Msg.Data; // Actual data

WORKING WITH INFORMATION OBJECTS

Working with information objects includes working with tables and transactions execution.

TRANSACTIONS EXECUTION

15

All the transactions, such as order entry, withdrawal, etc. are executed with MTEExecTrans,

MTEExecTransIP and MTEExecTransEx functions.

C++

int32 WINAPI MTEExecTrans (int32 Idx, char *TransName, char *Params,

char *ResultMsqg) ;

int32 WINAPI MTEExecTransIP (int32 Idx, char *TransName, char *Params,

char *ResultMsg, int32 ClientIP);
Pascal

function MTEExecTrans (Idx: Integer; TransName, Params,
ResultMsg: LPSTR): Integer; stdcall;
function MTEExecTransIP (Idx: Integer; TransName, Params,

ResultMsg: LPSTR; ClientIP: Integer): Integer; stdcall;

Arguments:
ldx

A descriptor of connection, on which, the transaction is being executed.
TransName

A pointer to an ASCIIZ string containing the name of transaction. Available names can be

obtained with MTEStructure, MTEStructure?2 or MTEStructureEx functions.

© Moscow Exchange, 2022

Params

A pointer to an ASCIIZ string containing the transaction parameters. The length of the string and
its value must match the description of transaction input fields (obtained with MTEStructure,
MTEStructure?2 or MTEStructureEx functions) . All fields have to be submitted as text,

according to the following trading system formatting:

ftChar

ftinteger

ftFixed

ftFloat

ftDate
ftTime

ftFloatPoint

Note:

Clientlp

(For MTEExecTransIP function) IP-address of the client, on whose behalf, the transaction is

Blank spaces are appended to correspond to the string length, defined in the
field description. For example, for a ftChar(12) field the string "user" has
to be presented as "USER ",

Zeros are added to the left side to reach the required length. For example,
the value 127 of the ftinteger(10) type has to be presented as “0000000127”.

Two symbols after the decimal point are kept, the decimal point itself is
deleted, and zeros are added to the left side to reach the required length. For
example, value 927.4 of the ftFixed(8) type has to be transformed into
“00092740” string.

N symbols after the decimal point are kept, the decimal point itself is
deleted, zeros are added to the left side to reach the required length. The
value of N depends on the price precision of a given financial instrument.
For example, value 26.75 of the ftFloat(9) type for the instrument with N=4,
has to be presented as “000267500”.

Specified as YYYYMMDD. For example, 24 August 1999 has to be
presented as "19990824".

Specified as HHMMSS. For example, 16:27:39 is to be presented as
"162739".

Zeros are added to the left side to reach the required length, the decimal
point is kept. For example, value 5.617 of the ftFloatPoint(9) type has to be
transformed into "00005. 617" string

An empty value (NULL) can be specified in a field of any type; for this, a
string of all blanks of the required length is used.

performed. To be used in interfaces for technical centers and regional exchanges.

ResultMsg

A pointer to a buffer of at least 256 bytes to store a text string containing the result of transaction

execution, in case of success.

Returned value:

If transaction has been processed by the trading system, then, one of the following codes is

returned:

MTE_OK — transaction executed;

MTE_TRANSREJECTED - the transaction has been received, but rejected by the

trading system (incorrect arguments, no rights to execute transactions, etc.);

MTE_TSMR - fatal error during the transaction execution (connection to the trading

system is lost, etc.).
A text string with the result of the transaction processing is stored in ResultMsg argument.

If error occurs, one of the MTE_xxxx error codes is returned. In this case a value of ResultMsg is

not defined.

Example:

Let the description of an object (received with MTEStructure) contains “Enter an order”

transaction with the following fields:

ORDER // Transaction name
BuySell: ftChar (1) // "B" - buy, "S" - sell
SecBoard: ftChar (4) // Board code
SecCode: ftChar(12) // Security code
Price: ftFloat (9) // Price

© Moscow Exchange, 2022

17

Quantity: ftInteger (10) // Number of lots

The following code is used to submit an order to buy 14 items of the "USD000000TOD" on
"CETS" board at the price of 26.15 (for this security, the price precision is 4 symbols after the
decimal point):

C++

int32 Idx; // Initiated by MTEConnect

int32 Err;
char *ResultMsg;

Err = MTEExecTrans (Idx, “ORDER”,
“BCETSUSDO00000TOD0002615000000000014”, ResultMsg) ;

if (Err == MTE OK)
fprintf (stdout, ”Transaction executed: %s\n”, ResultMsgqg) ;
else if (Err == MTE TSMR)

fprintf (stdout, “Transaction IS NOT executed: %$s\n”, ResultMsgqg);
else fprintf (stderr,”Error: %s\n”, MTEErrorMsg (Err)) ;

Pascal
Idx: Integer; // Initiated by MTEConnect

Err: Integer;
ResultMsg: TErrorMsg;

Err := TEExecTrans (Idx, 'ORDER',
'BCETSUSDO00000TOD0002615000000000014"', @ResultMsq);
case Err of
MTE OK: Writeln('Transaction executed: ' + ResultMsgq);
MTE TSMR, MTE TRANSREJECTED: Writeln ('Transaction IS NOT
executed: ' + ResultMsq);
else Writeln ('Error: ' + MTEErrorMsg(Err)) ;
end;

Note 1: all transactions or table data requests are sent sequentially within one connection. It means that a
transaction or a table data request can be sent to the trading system only after the reply to the previous one
is received. To avoid any related delays it is recommended:

e To use separate connections to perform transactions and to request table data.

e To use load balancer to distribute transactions between connections in case of high transaction
volume.

Note 2: when connected to independent trading and clearing systems, the “change password” transaction
should be executed as follows: first, send the CHANGE_PASSWORD transaction to the Trading System,
and after its successfully executed, send the same CHANGE_PASSWORD transaction to the Clearing
System. This is necessary for the automatic reconnect to the Clearing System to perform smoothly.

New transactions supported by the trading system can return multiple replies or string, longer than 255
symbols. For that kind of transactions, it’s recommended to use MTEExecTransEx function, which
returns an array of replies and text messages of unlimited length:

C++

int32 WINAPI MTEExecTransEx (int32 Idx, char *TransName, char *Params,
int32 ClientIp, MTEExecTransResult *Reply) ;

Pascal

function MTEExecTransEx (Idx: Integer; TransName, Params: LPSTR;
ClientIp: Integer; var Reply: TMTEExecTransResult): Integer; stdcall;

Arguments:
ldx
A descriptor of connection, on which, the transaction is being executed.

© Moscow Exchange, 2022

18

TransName

A pointer to an ASCIIZ string containing the name of transaction. Possible names can be
obtained by calling MTEStructure, MTEStructure2 o0f MTEStructureEx

functions.

Params
A pointer to an ASCIIZ string containing the transaction parameters. The length of the string and
its value must match the description of transaction input fields, obtained by calling
MTEStructure/MTEStructure2 or MTEStructureEx functions. All fields have to be
submitted as text, with the proper formatting (see. MTEExecTrans).

Clientlp
IP-address of the client, on whose behalf, the transaction is performed. To be used in interfaces
for technical centers and regional exchanges.

Reply

A pointer to a text string, in which, the transaction execution result and trading system reply are
stored. The TMTEExecTransResult / MTEExecTransResult structure is defined as:

C++

typedef struct TransResult {
// a number of entries in "replies" field
uint32 t replyCount;
// a pointer to an array of MTETransReply entries
MteTransReply* replies;

} MteTransResult;

typedef struct TransReply {
int32 t errCode; // Returned code (see. Returned values)

int32 t msgCode; // A number of message in Trading System
(which is indicated by brackets in the text)
char* msgText; // Trading System text message

int32 t paramCount; // A number of parameters in the reply
MteTransParam* params; // An array of parameters in the
reply
} MteTransReply;

Pascal

TMTEExecTransResult = record
// a number of entries in "Replies" field
ReplyCount: Longword;
// a pointer to an array of TMTETransReply entries
Replies: PMTETransReplies;

end;

// single reply of the Trading System
TMTETransReply = record
ErrCode: TMTEResult; // Returned code (see. Returned values)

MsgCode: Integer; // A number of message in Trading System
(which is indicated by brackets in the text)
MsgText: PAnsiChar; // Trading System text message
ParamCount: Integer; // A number of parameters in the reply
Params: PMTETransParams; // An array of parameters in the
reply
end;

Most of transactions return only one single reply, so ReplyCount value is “1” and
Replies contains 1 entry. An example of transaction, which returns more than one reply is
ORDER_AMEND.

© Moscow Exchange, 2022

19

Returned value:

If the transaction has been processed by trading system, the following is returned:

e MTE_OK - transaction successfully executed;

e MTE_TRANSREJECTED - the transaction has been processed, but rejected by the trading
server (invalid board specified, no rights to perform, etc.);

e MTE_TSMR - fatal error occurred, when processing the transaction (the loss of connection
with the trading system, etc.).

Additional parameters that may be present in a reply. Number of parameters is specified in
ParamCount.
e ST —time when transaction processing started by the trading engine in the following format:
ST=HHMMSSmicroseconds
e ON - order number
e IN — public order number in the FAST UDP Market Data feed; only available for orders that
are published in this feed.

WORKING WITH TABLES

Working with tables includes the following steps:
1. Opening a table

2. Periodically requesting for updates

3. Closing the table

OPENING A TABLE

To start working with a table, first it's necessary to call MTEOpenTable function. This function opens a
table and returns the content of the table partially or at once..
C++

int32 WINAPI MTEOpenTable (int32 Idx, char *TableName, char *Params,
int32 Complete, MTEMSG **Msqg) ;

Pascal
function MTEOpenTable (Idx: Integer; TableName, Params: LPSTR;
Complete: BOOL; var Msg: PMTEMsg): Integer; stdcall;
Arguments:
ldx
A descriptor of connection, obtained by MTEConnect.

TableName

A pointer to an ASCIIZ string containing the name of the table. Available names can be obtained
with MTEStructure, MTEStructure2 Or MTEStructureEx functions.

Params
A pointer to an ASCIIZ string containing the parameters of the table. The length of the string and
its value must match the description of table input fields, received with MTEStructure,
MTEStructure2 or MTEStructureEx. All fields have to be submitted as a text with the
proper formatting (see MTEExecTrans).

Complete
Flag to request either all the table data at once or only a part of it:

TRUE Return all the table data. Function will query the trading system as many times
as needed to obtain all the data. In case of big table size (e.g. TRADES or
SETTLECODES) it may take a long time and even lead to disconnection on
timeout. If the content is not needed all at once, then in order to decrease
execution time, the FALSE value should be used.

© Moscow Exchange, 2022

20

FALSE Depending on the table type, the function returns only a part of the data or
nothing at all. Function will query the trading system one time, maximum. The
remaining data will considered as an update and should be read during the
update request cycle, initiated with MTEAddTable /MTERefresh.

Msg

An address of a variable (of the type “a pointer to a TMTEMsg/MTEMSG”), to store a pointer to
the buffer, containing the data of opened table. Buffer format is described in Appendix 2.

Returned value:

If successful, a descriptor of an open table is returned (value that is greater or equal to
MTE_OK). Received descriptor can be used when calling MTEAddTable function.

If error occurs, one of the MTE_xxxx error codes is returned. If MTE_TSMR error code is
returned, then "Data" field of the Msg structure contain error message with a length of [Datalen]
symbols.

REQUEST FOR UPDATE

Request for a table content update is performed in a batch mode, i.e. requests to update several open tables
are processed simultaneously. A set of tables to be refreshed is formed by calling MTEAddTable
function for every table. Then all the updates can be received with MTERe fresh function. Execution of
other library functions (except MTEErrorMsg) is not allowed between those two functions.

MTEAddTable function adds a table to the update queue (changes that occurred since the last request).
C++
int32 WINAPI MTEAddTable (int32 Idx, int32 HTable, int32 Ref);
Pascal
function MTEAddTable (Idx, HTable, Ref: Integer): Integer; stdcall;
Arguments:
ldx
Connection descriptor received with MTEConnect.
HTable
Table descriptor received with MTEOpenTable.

Ref

Optional parameter to store arbitrary data. Usually used to match the data with a table in a buffer,
received with MTERe fresh.

Returned value:
One of the MTE_xxxx error codes.

MTERe fresh function performs the batch table updates (the request is formed with the MTEAddTable)
C++
int32 WINAPI MTERefresh (int32 Idx, MTEMSG **Msq) ;
Pascal
function MTERefresh (Idx: Integer; var Msg: PMTEMsg): Integer; stdcall;
Arguments:
ldx
Connection descriptor obtained by calling MTEConnect.
Msg

An address of a variable (of the type “a pointer to a TMTEMsg/MTEMSG”) to store the received
updates. The buffer format is described in appendix 3.

© Moscow Exchange, 2022

21

Returned value:
If successful then MTE_OK is returned and pointer to the update is saved into Msg argument

If error occurs, one of the MTE_xxxx error codes is returned. If MTE_TSMR error code is
returned, then the Data field of the Msg structure will contain the error message and have the
Datalen length of string.

CLOSING THE TABLE

Upon the end of work with a table it should be closed with MTECloseTable. The table descriptor
cannot be used after this function execution.

C++
int32 WINAPI MTECloseTable (int32 Idx, int32 HTable) ;

Pascal
function MTECloseTable (Idx, HTable: Integer): Integer; stdcall;

Arguments:

Idx
Connection descriptor received with MTEConnect.

HTable
A descriptor of the closing table, received with MTEOpenTable.
Returned value:

One of MTE xxxx error codes.

EXAMPLE

Let the structure of input fields (received with MTEStructure) of SECURITIES and TRADES tables,
is as follows:

SECURITIES // Table name (Securities)
Market: ftChar (4) // Market code
Board: ftChar (4) // Trading board (mode) code
TRADES // “TRADES” table has no input fields

The following code shows how to work with tables. Tables are opened, their content is periodically
updated and then the tables are closed.

C++

int32 Idx; // Initiated by MTEConnect
MTEMsg *Msg;

char *Data;

int32 HSecurs, Htrades;

HSecurs = MTEOpenTable (Idx, “SECURITIES”, “CETS Y, 1 /*True*/,
&Msg) ;
Data = (char *) (Msg + 1);

// Processing the received data

HTrades = MTEOpenTable (Idx, “TRADES”, “”, 0/*False*/, Msqg);
Data = (char *) (Msg + 1);

// Processing the received data

© Moscow Exchange, 2022

22

do

MTEAddTable (Idx, HSecurs, 0);
MTEAddTable (Idx, HTrades, 1);
MTERefresh (Idx, &Msgqg);

Data = (char *) (Msg + 1);

// Processing the updates
twhile(!Terminated) ;

MTECloseTable (Idx, HSecurs) ;
MTECloseTable (Idx, HTrades) ;

Pascal

Idx: Integer; // Initiated by MTEConnect
Msg: PMTEMsg;

HSecurs, HTrades: Integer;

Data: PAnsiChar;

HSecurs := MTEOpenTable (Idx, 'SECURITIES', 'CETS ', True,
Msg) ;

// Processing the received data
HTrades := MTEOpenTable (Idx, 'TRADES', '', False, Msqg);

// Processing the received data

repeat
MTEAddTable (Idx, HSecurs, 0);
MTEAddTable (Idx, HTrades, 1);
MTERefresh (Idx, Msqg);
Data := @Msg.Data;

// Processing the updates
until Terminated;

MTECloseTable (Idx, HSecurs) ;
MTECloseTable (Idx, HTrades) ;

NOTES ON WORKING WITH TABLES

Note 1. Follow these steps to avoid disconnections on timeout: 1. do not to set too small (less than 60
seconds) values for the DisconnectlfldleFor parameter in ASTS Bridge configuration file; 2. maintain
active connection (heartbeat) by regular (approximately every 30 seconds) requests — for example, to
update TESYSTIME table. The USER_HEARTBEAT transaction can be used to monitor the connection
status.

Note 2. Most of the tables can be opened and closed anytime and as many times as needed during the
connection session with a server. Any number of table copies can be opened. However, some of the tables
can be opened only once during the session. These tables are: ORDERS, TRADES, NEGDEALS,
ALL_TRADES, POSITIONS, HOLDINGS, RM_INDICATIVE. If such table is closed and then opened
again, then initial content of the table will not be received again — only content updates will come.

Consequently, it is recommended to open such tables only once during the connection session and close
them only at the end of the session.

© Moscow Exchange, 2022

23

Note 3. For tables having the "tfClearOnUpdate — Clear on update" flag (except for the
EXT_ORDERBOOK table) the following updates processing order is defined: when a table is to be
cleared, then the RowsNumber is set to 1, i.e. only a single string with DatalLength=0 is returned (see
Appendix 2).

There are two types of requests for orderbook (quotations) for the EXT_ORDERBOOK table:

1. To get information on one security, the request has to have non-empty values of “Board” and
“Security” fields;

2. To get orderbook (quotations) for all available securities with one request, fields “Board” and
“Security” have to be filled-in with spaces.

For the first type, when the orderbook table has to be cleared as the result of request, a table with a single
row is received that contains the following values: NumberOfFields=2 and DataLength=(length of
“Board” field + length of “Security” field). This string contains only the “Board” and “Security” fields.
For the second type, the reply on request can contain several such strings (which contain only the values
of “Board” and “Security” fields) — for given financial instruments this will mean the deletion of
orderbook (quotation) values.

Note that during the first request for all securities (i.e. at opening time), strings with initial zero values of
orderbook can be received. This is explained by the Trading system data transfer mechanism: the status of
these instruments has changed, so the Trading system only sends updates of the orderbook fields, which
are not reflected in clients’ systems. That is why all the updated orderbooks are transmitted even if they
are empty. The consequent requests will return data only on the orderbooks that have changed.

Also note that the test TEClient.exe application only shows instruments with changes since the last request
when opening the orderbook for the whole market, i.e. only those of the instruments that have updates in
the orderbook. Information on instruments with no orderbook changes will not be shown.

Note 4. The maximum refresh interval is governed by a document "Requirements for external systems and
their interfacing with ASTS Trading system". To avoid any delays at peak times, it’s possible to use the
adaptive refresh model: if the received data buffer is greater than 30 Kbytes, then ask for another update
immediately. If the buffer is less than 30 Kbytes then send the next request with standard interval (in 1
second, for example).

Note 5. When processing the data buffer with table rows all the records with matching values in key fields
should be merged into one table row. In certain cases, for example when opening the SECURITIES table,
even a single buffer may include several records for one row. Besides that, as will be explained in the
appendices below, one record in a buffer may either represent a whole table row (including static values)
or changes only. It is recommended to always implement the scenario when a partial set of fields may be
received for any table.

MEMORY USE OPTIMIZATION

All the functions of MTESRL library that return pointers to data buffer (pointer to the
PMTEMsg/MTEMSG structure; for example, MTEStructure, MTERefresh) use the same memory
region as the reception buffer (this is for one connection; with multiple connections multiple memory
areas are used). Let’s call these functions “informational functions”.

If informational function call returns data buffer that is larger than allocated, then the reallocation of a
larger block of memory will occur. Thus the maximum size of allocated memory equals to the largest
block of data received. All the allocated memory is released when connection is closed with
MTEDisconnect.

It is also possible to free the memory allocated for the buffer at any time, without closing the connection.
MTEFreeBuffer function is used for this purpose. This function should be called only after all the
received data has been processed. It should be kept in mind that before the next call of any of the
informational functions, memory should be allocated again. Frequent use of MTEFreeBuffer can
negatively influence the performance.

© Moscow Exchange, 2022

24

C++
int32 WINAPI MTEFreeBuffer (int32 t conno);
Pascal
function MTEFreeBuffer (Idx: Integer): Integer; stdcall;
Arguments:
ldx
A descriptor of connection received with MTEConnect to free the memory for.

Returned value:
One of the MTE _xxxx error codes.

This is the legacy function that is kept for compatibility with old client software.

RECOVERY AFTER FAILURES AT ASTS Bridge SERVER

During operation, external system or ASTS Bridge sometimes needs to be restarted in case of a critical
error. In that case, it is necessary to restore the system as soon as possible. In such situations, it is
recommended to use the following technology: external system makes a backup of loaded tables and state
of internal structures in files with a certain periodicity; in case of failure, data from the saved files is used
to restore last saved state of the external system.

MTESRL library allows to initiate the data transfer from ASTS Bridge Server, not only from the
beginning of a trading session, but from a certain point as well. To do so, the snapshot of opened tables
status should be made beforehand. Afterwards (if, for example, the connection to ASTS Bridge Server has
been lost) it will be possible to recover the status of open tables and continue getting data.

BACKING UP BRIDGE INTERNAL STRUCTURE

Backing up the state of the Bridge internal structures is performed after requesting and processing tables'
updates. This operation can be performed after each request for changes or after certain number of them.
As a rule, along with saving of bridge internal structures, the current state of all tables of the external
system is backed up. This ensures complete preservation of the current state of the whole system,
consisting of an external system and ASTS Bridge. A detailed scenario of operation in this case is shown
below:

To obtain a current state of tables opened on the server, use MTEGetSnapshot function.
C++
int32 WINAPI MTEGetSnapshot (int32 Idx, char ** Snapshot, int *Len);

Pascal

function MTEGetSnapshot (Idx: Integer; var Snapshot: LPSTR;
var Len: Integer): Integer; stdcall;

Arguments:
ldx
Descriptor of connection, for which, the snapshot of opened tables should be received.

Snapshot
Address of the variable where pointer to the snapshot will be placed in case of success.

Len

Address of the variable, where the snapshot (i.e. buffer at which the Snapshot points) length will
be placed in case of success.

Returned value:
In case of success the function returns MTE_OK .

If error occurs, one of the error MTE_xxxx codes is returned. If MTE_TSMR error code is
returned, then the Snapshot will point to the error message and the Len will contain the length of
this message.

© Moscow Exchange, 2022

25

The snapshot of tables, loaded on the server side, can be considered just as a buffer with some binary data.
Its content does not have any meaning for the client.

The following code assumes that external system has connected to ASTS Bridge, received a data structure,
opened tables and moved to the cycle of getting tables updates:

C++
int32 Idx; // Initiated by MTEConnect
MTEMsg *Msg;
char *DataPtr;
int32 *TablesIdx; // array of indexes received with MTEOpenTable
int32 i,NumTables;// number of the updated tables
char *SnapshotBuf;// pointer to the buffer for the emergency
int32 Snapshotlen;// length of the buffer for the emergency saving
do
{

for(i = 0; 1 < NumTables; i++)

MTEAddTable (Idx, TablesIdx[i], 1)
MTERefresh (Idx, &Msgqg) ;
DataPtr = (char *) (Msg + 1);

// Processing the updates

// Receive of the buffer for the Bridge internal structure
MTEGetSnapshot (Idx, &SnapshotBuf, &SnapshotLen)

// saving the buffer to the file

// saving the status

}while (!Terminated);

Pascal
Idx: Integer; // Initiated by MTEConnect

Msg: PMTEMsg;
DataPtr: PChar;
TablesIdx: array of Integer; // of indexes received with

MTEOpenTable
i, NumTables: Integer; // number of the updated tables
SnapshotBuf: PChar; // pointer to the buffer for the
emergency
SnapshotLen: Integer; // length of the buffer for the emergency
saving
repeat

for i := 0 to NumTables - 1 do

MTEAddTable (Idx, TablesIdx[i], 1i);
MTERefresh (Idx, Msg);
DataPtr = @Msg.Data;
// Processing the updates
// Receive of the buffer for the Bridge internal structure
MTEGetSnapshot (Idx, SnapshotBuf, Snapshotlen) ;
// saving the buffer to the file

// saving the status

© Moscow Exchange, 2022

26

until Terminated;

BRIDGE INTERNAL STRUCTURE RECOVERY

To get the list of opened tables, contained in a given snhapshot, use MTEGetTablesFromSnapshot
function. This function can be called both before and after MTESetSnapshot.
C++

int32 WINAPI MTEGetTablesFromSnapshot (int32 Idx, char * Snapshot,
int Len, MTESnapTable **SnapTables) ;

Pascal
function MTEGetTablesFromSnapshot (Idx: Integer; Snapshot: LPSTR;
Len: Integer, var SnapTables: PMTESnapTables): Integer; stdcall;
Arguments:
ldx
Connection descriptor, obtained by MTEConnect function.

Snapshot
A pointer to a buffer, where the snapshot, taken by MTEGet Snapshot, is stored.

Len
Buffer length.

SnapTables

An address of a variable containing a pointer to MTESnapTable structure, where, in case of
success, a pointer to a buffer of opened tables will be placed. A memory for this buffer is
allocated by a library. In case of repeated calls to this function, the same buffer is used, so, result
should be saved by external system. The buffer has following format:

C++

typedef struct SnapTable {
int32 Htable; // Descriptor of the opened table
char* TableName // A poiner to an ASCIIZ-string,
containing table name.
char* Params; // A pointer to an ASCIIZ-string,
containing the parameters, used when opening the table.
} MteSnapTable;

Pascal
TMTESnapTable = record

HTable: Integer; // A table descriptor

TableName: PAnsiChar; // char, Zero-byte terminated, Table
Name

Params: PAnsiChar; // char, Zero-byte terminated,
Parameters provided on open table
end;
PMTESnapTables = “TMTESnapTables;

TMTESnapTables = array [0..999999] of TMTESnapTable;
Returned value:

In case of negative value, return code is interpreted as MTE_xxxx error code.

In case of success, function returns non-negative value, equal to the number of opened tables, and
a pointer to a formed array of tables structures MTESnapTable through SnapTables
parameter.

Internal structures recovery is performed when restarting Bridge or external system after failures to restore
the system to the moment of last snapshot. This operation should be performed only within the current

© Moscow Exchange, 2022

27

trading session (see. MTEGetSnapshot). As a result, all opened tables and their descriptors will be
restored. So, previously used descriptors can be used again right after recovery. MTESetSnapshot
function can be used to restore Bridge last saved state.

C++

int32 WINAPI MTESetSnapshot (int32 Idx, char * Snapshot, int Len,
char *ErrorMsq) ;

Pascal

function MTESetSnapshot (Idx: Integer; Snapshot: LPSTR; Len: Integer;
ErrorMsg: LPSTR): Integer; stdcall;

Arguments:
ldx
A descriptor of connection, for which, the last state is restored.
Snapshot
A pointer to the buffer, which stores previously taken “snapshot”.
Len
The length of the buffer, pointed by a snapshot.
ErrorMsg
A pointer to at least 256 bytes buffer, to store a text string containing the result of restoring.

Returned value:

If function was successfully processed by the trading system, the following will be returned:

MTE_OK - restoring complete;
MTE_TSMR - trading system is unable to restore the state.

A text string containing result, returned by trading system, will be placed to ErrorMsg argument.
If error occurs, one of the MTE_xxxx error codes is returned. ErrorMsg field value is not defined.

The following code assumes that external system has backed up own and Bridge’s state before
the failure. Complete restart of the system, including Bridge server, is performed (acts similar
when restarting only external system or just ASTS Bridge server). System has connected to
Bridge server and obtained data structure description:

C+H
int32 Idx; // Initialized MTEConnect call

MTEMsg *Msg;
char *DataPtr;

int32 *TablesIdx; // array of indexes of opened tables
int32 i, NumTables; // a number of updated tables

char *SnapshotBuf; // a pointer to a data buffer that will
be used when restoring the state of Bridge server

int32 SnapshotlLen; // buffer length

// Recovery of the external system from the stored data
// At the same time NumTables values and index array of open tables

// Loading of the saved buffer from the file,
// which was backed up after last MTEGetSnapshot call,
// (initialization and loading SnapshotBuf buffer)

//Restoring the internal structures last state
MTESetSnapshot (Idx, SnapshotBuf, SnapshotLen) ;
//start of the normal operation cycle of the external system
do
{

for(i = 0; i < NumTables; i++)

MTEAddTable (Idx, TablesIdx[i], 1i);
MTERefresh (Idx, &Msgqg) ;

© Moscow Exchange, 2022

28

DataPtr = (char *) (Msg + 1);
// Processing the updates

}while (!Terminated) ;

Pascal
Idx: Integer; // Initialized MTEConnect call

Msg: PMTEMsg;

DataPtr: PChar;

TablesIdx: array of Integer; // array of indexes of opened tables
i, NumTables: Integer; // a number of updated tables

SnapshotBuf: PChar; // a pointer to a data buffer that will
be used when restoring the state of Bridge server
SnapshotLen: Int32; // buffer length

// Recovery of the external system from the stored data
// At the same time NumTables values and index array of open tables

// Loading of the saved buffer from the file,
// which was backed up after last MTEGetSnapshot call,
// (initialization and loading SnapshotBuf buffer)

// Restoring the internal structures last state
MTESetSnapshot (Idx, SnapshotBuf, Snapshotlen) ;
// start of the normal operation cycle of the external system
repeat

for i := 0 to NumTables - 1 do

MTEAddTable (Idx, TablesIdx[i], 1i);
MTERefresh (Idx, Msqg) ;
DataPtr = @Msg.Data;

// Processing the updates

until Terminated;

EXAMPLE OF RECOVERY AFTER THE FAILURE

Suppose that we have:

1.
2.

Established connection with ASTS Bridge Server with MTEConnect.

Opened several tables by calling MTEOpenTable and saved their descriptors in variables named
hTablel, hTable2, ..., hTableN.

Executed some transactions, requested updates of informational tables, periodically saved the
snapshots with MTEGet Snapshot.

Now suppose that at certain point the connection with ASTS Bridge Server has been lost. The
recovery procedure will be as follows.

Reconnect to the Bridge Server with MTEConnect;
Call MTESetSnapshot with the last saved snapshot

Now we can use previously defined table handles hTablel, hTable2, ..., hTableN. There is no need to
call MTEOpenTable again. All the following MTERefresh calls will return tables updates,
accumulated after saving Snapshot.

If the data, received before the connection loss, have been saved, Get / Set Snapshot mechanism can
significantly reduce the time of reception of all tables' updates after the reconnection.

© Moscow Exchange, 2022

29

SELECTIVE OPEN OF TABLES FROM THE SNAPSHOT

There is also an alternative way to restore the system after failure. Instead of saving and loading complete
state of all tables, it’s possible to restore only certain large tables (e.g. “ORDERS”, “TRADES”), and open
other tables in the usual way — with MTEOpenTable function. This way eliminates the need for storage
a list of open tables along with their descriptors. It’s enough to retain only the snapshot, and then open the
tables, using the MTEOpenTableAtSnapshot function. The data from tables, opened this way, will
not come from scratch but from the moment when an appropriate snapshot was taken. There is no need to
call MTESetSnapshot in that scenario.

C++

int32 WINAPI MTEOpenTableAtSnapshot (int32 Idx, char* TableName,
char* Params, char* Snapshot, int SnapshotlLen, MTEMsg **Msgqg) ;

Pascal

function MTEOpenTableAtSnapshot (Idx: Integer;
TableName, Params, Snapshot: PAnsiChar;
SnapshotLen: Integer; var Msg: PMTEMsg): Integer; stdcall;

Arguments:
ldx
A descriptor of connection, obtained by calling MTEConnect.

TableName

A pointer to ASCIIZ string containing a table name. Possible names can be obtained by calling
MTEStructure, MTEStructure2 or MTEStructureEx functions.
Params

A pointer to ASCIIZ string containing parameters of the table. The length of the string and its
value must match the description of table input fields, received with MTEStructure or
MTEStructure2 or MTEStructureEx. All fields have to be submitted as a text with trading
system formatting.

Snapshot
A pointer to a buffer containing a shapshot. The requested table with the specified parameters
should be included in this snapshot, otherwise the function returns an MTE_TSMR error. If null
pointer is passed in this parameter, the function behaves like a call to MTEOpenTable with
Complete = FALSE option.

SnapshotLen
A length of the buffer containing the snapshot.

Msg
Address of variable (of type "pointer to TMTEMsg/MTEMSG"), which, if successful, will store a

pointer to a buffer containing a portion of updates for an open table. The buffer format is
described in Appendix 2.

Returned value:

In case of success, function returns descriptor of the opened table (value greater or equal
MTE_OK). Obtained descriptor is used when calling MTEAddTable function.

If error occurs, one of the MTE xxxx error codes is returned. If the returned error code is
MTE_TSMR, the Data field of Msg structure contains error message of DataLen characters

length.
The following code shows selective opening of «Ordersy table from the snapshot:
C++
int32 Idx; // Initialized by calling MTEConnect

MTEMsg *Msg;
char *DataPtr;

© Moscow Exchange, 2022

30

char *Snapshot;
int32 Len;
int32 HSecurs, HTrades;

HSecurs = MTEOpenTable (Idx, “SECURITIES”, “EQBR Y, 1 /*True*/,
&Msg) ;
// Processing the received data

HTrades = MTEOpenTable (Idx, “TRADES”, “”, 0 /*False*/, &Msqg);
// Processing the received data

// Fail occurred!. Saving the snapshot and closing the tables
MTEGetSnapshot (Idx, &Snapshot, &Len);

MTECloseTable (Idx, HSecurs);

MTECloseTable (Idx, HTrades) ;

// Recovery starts. Loading the snapshot and opening the tables
HSecurs = MTEOpenTable (Idx, “SECURITIES”, “EQBR N,

1 /*True*/, &Msgqg);
// SECURITIES table is opened from scratch, processing the data

HTrades = MTEOpenTableAtSnapshot (Idx, “TRADES”, “”, Snapshot,
Len, &Msqg);

// TRADES table is opened from the snapshot, processing the data
do {

MTEAddTable (Idx, HSecurs, 0);

MTEAddTable (Idx, HTrades, 1);

MTERefresh (Idx, &Msgqg);

DataPtr = (char *) (Msg + 1);

// Processing the updates

} while (!Terminated);

MTECloseTable (Idx, HSecurs) ;
MTECloseTable (Idx, HTrades) ;

Pascal

Idx: Integer; // Initialized by calling MTEConnect
Msg: PMTEMsg;

HSecurs, HTrades: Integer;

Snapshot: PAnsiChar;

Len: Integer;

Data: PAnsiChar;

HSecurs := MTEOpenTable (Idx, 'SECURITIES', 'EQBR ', True,Msqg) ;
// Processing the received data

HTrades := MTEOpenTable (Idx, 'TRADES', '', False, Msqg);
// Processing the received data

// Fail occurs here. Saving the snapshot and closing the tables
MTEGetSnapshot (Idx, Snapshot, Len);

MTECloseTable (Idx, HSecurs) ;

MTECloseTable (Idx, HTrades) ;

// Recovery starts. Loading the snapshots and opening the tables
HSecurs := MTEOpenTable (Idx, 'SECURITIES', 'EQBR ', True,Msqg) ;
// SECURITIES table is opened from scratch, processing the data

© Moscow Exchange, 2022

31

HTrades := MTEOpenTableAtSnapshot (Idx, 'TRADES', '', Snapshot,
Len, Msq);
// TRADES table is opened from the snapshot, processing the data
repeat

MTEAddTable (Idx, HSecurs, 0);

MTEAddTable (Idx, HTrades, 1);

MTERefresh (Idx, Msqg) ;

Data := @Msg.Data;
// Processing the updates

until Terminated;

MTECloseTable (Idx, HSecurs) ;
MTECloseTable (Idx, HTrades) ;

CLOSING CONNECTION SESSION

Upon the end of work on the market, the client has to execute the MTEDi sconnect function.
C++
int32 WINAPI MTEDisconnect (int32 Idx);
Pascal
function MTEDisconnect (Idx: Integer): Integer; stdcall;
Arguments:
ldx
Connection handle received with MTEConnect, that has to be closed.

Returned value:

One of the MTE xxxx error codes.

Example:
Close the connection with ldx descriptor.
C++
int32 Idx; // Initiated by MTEConnect
int32 Err;

Err = MTEDisconnect (Idx) ;
if (Err != MTE OK)
fprintf (stderr, “Error: %$s\n”, MTEErrorMsg (Err)) ;
else
fprintf (stdout,”Session has ended\n”);
Pascal

Idx: Integer; // Initiated by MTEConnect
Err: Integer;

Err := MTEDisconnect (Idx);

if Err <> MTE OK then Writeln (MTEErrorMsg (Err)
else Writeln('Session has ended') ;

ERROR MESSAGES

All the library functions support MTE_xxxx error codes. MTEErrorMsg of MTEErrorMsgEx functions
can be used to get the error code text description

© Moscow Exchange, 2022

C++

32

char * WINAPI MTEErrorMsg (int32 ErrorCode) ;

char * WINAPI MTEErrorMsgEx (int32 ErrorCode,

Pascal

function MTEErrorMsg (ErrCode:
function MTEErrorMsgEx (ErrCode:

stdcall;

Arguments:
ErrorCode

char *Language) ;

LPSTR;
Language:

stdcall;
PAnsiChar) :

Integer) :

Integer; LPSTR;

One of the MTE_xxxx error codes.

Language

Appropriate language to use in error messages. Possible values are: “English”, “Russian”,
“Ukrainian”. If invalid language is specified, English will be used instead. MTEErrorMsg
function always returns messages in English.

Returned value:

Pointer to an ASCIIZ-string that contains text description of an error.

ERROR CODES

1D Code Description

MTE_OK 0 No errors.

MTE_CONFIG -1 Configuration error: trying to connect to the wrong server, no
services specified on a server, wrong parameter values in
configuration file.

MTE_SRVUNAVAIL -2 Server is not available. ASTS Bridge Server is not running,
Trading system is not available or connection is disrupted.

MTE_LOGERROR -3 Could not create log file when calling MTEConnect.

MTE_INVALIDCONNECT | -4 Invalid connection handle was given. MTEConnect has not
been called or MTEDisconnect function has already been
called.

MTE_NOTCONNECTED -5 Connection with a given descriptor has been lost due to an
error (and not as the result of MTEDisconnect function).
Error on ASTS Bridge Server, Trading System has been shut
down or connection is disrupted.

MTE_WRITE -6 Error writing to port. Error on ASTS Bridge Server or port
connection is disrupted.

MTE_READ -7 Error reading from port. Error on ASTS Bridge Server or port
connection is disrupted.

MTE_TSMR -8 Error related to the protocol of interaction with the Trading
system, or trading system is not available.

MTE_NOMEMORY -9 Not enough memory to perform the operation.

MTE ZLIB -10 Error in compression/decompression of transmitted data.

MTE_PKTINPROGRESS -11 MTEAddTable function has been called without the
following call of MTERefresh. Other functions cannot be
called while the request package is being prepared.

MTE_PKTNOTSTARTED -12 MTERefresh function has been called without the prior call
of MTEAddTable. The update request package has to be
prepared first.

MTE_FATALERROR -13 An unexpected fatal error has occurred.

MTE_INVALIDHANDLE -14 Invalid table descriptor. Either the descriptor hasn’t been
received with MTEOpenTable or a table has already been
closed with MTECloseTable.

MTE_DSROFF -15 Serial port connection has been disrupted (no DSR signal).

Probably the serial cable is damaged or the serial port is

© Moscow Exchange, 2022

33

closed at one of the connecting sides. Available in the old
ASTS Bridge versions.

MTE_UNKNOWN -16 Unexpected error occurred when executing a function.

MTE_BADPTR -17 Invalid pointer argument has been passed to a one of
MTExxxx() function.

MTE_TRANSREJECTED -18 Trading system has processed the request and returned an
error code. Transaction has been rejected.

MTE_TEUNAVAIL -19 Trading system is temporary unavailable. The server attempts
to recover the connection with the Trading system, or waits
for a trading session.

MTE_NOTLOGGEDIN -20 Client attempts to execute a request after the server has
established a new connection session with the trading session.
Client re-connection required.

MTE_WRONGVERSION -21 Current version of client library is not supported by server.

MTE_LOGON -30 Wrong login data (USERID, PASSWORD, etc.) provided.

MTE_TOOSLOWCONNECT | -31 Too slow connection channel does not allow to finalize
connection/reconnection procedure correctly.

MTE_CRYPTO_ERROR -32 Encryption/decryption error when creating/verifying the
digital signature.

MTE_THREAD_ERROR -33 The client is trying to use one connection in two threads. For
example, trying to call an MTExxxx() function while the
previously executed MTExxxx() function has not finished its
operation yet.

MTE_NOTIMPLEMENTED | -34 The requested function is not supported by this version of
client library.

MTE_ABANDONED -35 Returned by MTEDisconnect function (called in another
thread), in case of working thread has been stopped by calling
TerminateThread.

MTE_BADINTERFACE -36 Returned by MTEConnect/MTEConnectEx function if

error occurs when loading the interface from the Trading
System (e.g. the ASTSBridge version is outdated andt doesn’t
support current interface format).

© Moscow Exchange, 2022

34

APPENDIX 1. BUFFER FORMAT OF THE MTESTRUCTURE,
MTESTRUCTUREZ2 AND MTESTRUCTUREEX FUNCTIONS

The Data field of the TMTEMsg/MTEMSG structure, pointer to which is returned by the MTEStructure
function, has the following format (for the description of basic types e.g. String, Integer, etc, see Appendix
4; in case of MTEStructure each String field is preceded with 4 bytes that indicate the length of the
following string). Fields and values, passed only in MTEStructure2 function (similar to
MTEStructureEx with Version=2 attribute)are marked with red:

Field type
TInterface:
InterfaceName String
InterfaceTitle String
InterfaceDescription String // only MTEStructureEx with Version>=2
MsgSetNumber String // only MTEStructureEx with Version>=4
EnumeratedTypes TEnumTypes
Tables TTables
Transactions TTransactions

The description of information objects consists of three blocks: enumerated types, tables and transactions.

TEnumTypes:
NumberOfTypes Integer
Type: TEnumType
Type: TEnumType
Typex TEnumType

TEnumType:
Name String
Title String
Description String // only MTEStructureEx with Version>=2
Size Integer
Type TEnumKind
NumberOfConstants Integer
Constant; TEnumConst
Constant, TEnumConst
Contstanty TEnumConst

TEnumConst for MTEStructure:
String string // formatted «Value=LongDescription»

TEnumConst for MTEStructureEx with Version>=2:

Value string

LongDescription string

ShortDescription string
TEnumKind: Integer

ekCheck = 0

ekGroup = 1

ekCombo = 2

Enumerated types are used to describe available values of table fields and transactions. A type description
looks similar to the following:

"TCurrency' // Name

'"Currency' // Description

4 // Size

ekCombo // Preferred representation - "Type"
3 // Number of constants

'RUR =Roubles' // Constant 1

'USD =U.S. Dollars' // Constant 2

© Moscow Exchange, 2022

35

'EUR =Euro’ // Constant 3

"Size" field (=4) indicates the size of available values for the fields of this type.

"Type" field (=ekCombo) assigns the preferred way of field representation that is used during the creation
of a form for parameters entry. For example, the ekCombo field type can be presented as a list of values.
Auvailable values are illustrated below:

J* Using Enumerated Types M= E3
Kind = tkCheck Find = tkGroup Kind = tk.Combo
Order
¥ Do not split price (" Split price Do not split price j
¢ Do not split price T r——

For MTEStructure constants consist of two parts — acceptable value (always with the length of
"Length™) and description of this value. Two parts are separated by the equals sign (=).

For MTEStructure2 and MTEStructureEx with Version>=2 constants value and their
description are passed in separate fields.

TTables:
NumberOfTables Integer
Table; TTable
Table: TTable
Tabley TTable
TTable:
Name String
Title String
Description String // only MTEStructureEx with Version>=2
SystemIndex Integer // only MTEStructureEx with Version>=2
Attributes TTableFlags
InputFields TFields
OutputFields TFields
TTableFlags: Integer
tfUpdateable =1
tfClearOnUpdate = 2
tfOrderbook =4 // only MTEStructureEx with Version>=2

The list of table input fields is used when forming a parameter string for MTEOpenTable function.
The list of output parameters allows to parse buffers, returned by MTEOpenTable and MTERefresh
functions.

“SystemlIndex” field contains a number of subsystem of ASTS Trading system, which processes current
request. Updates packet, formed by MTEAddTable calls, may contain only queries with the same
"SystemlIndex". Currently, for all markets, except for Derivatives market, the index is 0, and all the tables
can be updated with a single MTERefresh call. There are two subsystems in the derivatives market:
Trading system and Risk Management system — so all requests for update should be divided into two
packets according to the "Systemindex".

Table attributes can be combined (i.e. the value will be equal to 3) and have the following values:

tfUpdateable - the table is updateable. Functions MTEAddTable/MTERefresh can be used to
get updates;

tfClearOnUpdate - the old table contents should be cleared before each update with
MTEAddTable/MTERefresh functions.

tfClearOrderbook — the table has a orderbook (quotebook) format and should be appropriately processed
(see. Working with tables -> Notes).

© Moscow Exchange, 2022

TFields:
NumberOfFields
Field:
Fieldz

FieldN
TField:
Name
Title
Description
Size
Type
NumbDecimalPlaces
Attributes

EnumeratedType
DefaultValue

TFieldType:
ftChar
ftInteger
ftFixed
ftFloat
ftDate =
ftTime =
ftFloatPoint = 6
ftMemo =7

Il
[GETNNOVE S e

TFieldFlags:
ffKey = 0x01
ffSecCode = 0x02
ffNotNull 0x04
ffvarBlock = 0x08

36

Integer
TField
TField

TField

String

String

String // only MTEStructureEx with Version>=2
Integer

TFieldType

Integer // only MTEStructureEx with Version>=2
TFieldFlags

String

String // for input fields only

Integer

// only MTEStructureEx with Version>=3
// only MTEStructureEx with Version>=5

Integer

// only MTEStructureEx with Version>=2

Field attributes (TFieldFlags) can be combined and have the following values:

ffKey Key field. Table rows with the same key field values should be merged in one string.

ffSecCode This field contains security ID. It’s recommended to consider this flag when automating
the procedure of counting decimal places in fields of type ftFloat.

ffNotNull Cannot be null.

ffvVarBlock This field may be repeated several times.

Note. “DefaultValue” field is available only as input field.

“Size” defines the lengths of a field in characters.

"NumbDecimalPlaces" specifies the number of decimal places for fields of type ftFixed.
“EnumeratedType” can contain either name of an enumerated type to which a field refers or an empty

string.

“Default Value” can be used when creating a form for parameters entry.
All fields are represented in trading system text format (see MTEExecTrans).

TTransactions:
NuOfTransactions
Transaction;
Transaction;

Transactiony

TTransaction:
Name
Title
Description
SystemIndex

© Moscow Exchange, 2022

Integer
TTransaction
TTransaction

TTransaction

String
String
String // only MTEStructureEx with Version>=2
Integer // only MTEStructureEx with Version>=2

37

InputFields TFields

The list of transaction input fields is used when forming a parameter string for the MTEExecTrans
function.

APPENDIX 2. BUFFER FORMAT OF THE MTEOPENTABLE FUNCTION

The Data field of the TMTEMsg/MTEMSG structure (pointer returned by the MTEOpenTable function)
contains rows of a requested table and has the following format (for the description of the basic types e.g.
String, Integer, etc, see Appendix 4):

field type
TMTETable:

Ref Integer

NuOfRows Integer

Row; TMTERoOwW

Row; TMTERow

Rowy TMTERow

"Ref* field is used when requesting updates for several tables simultaneously with
MTEAddTable/MTERefresh functions. It contains the value of a third parameter passed to
MTEAddTable(ldx, Htable, Ref) function. By value of this field, it's possible to determine which table
(HTable descriptor) the received TMTETable structure corresponds to. The “Ref” field value is set to “0”
in the buffer returned by the MTEOpenTable.

TMTERow :
NumberOfFields Byte
Datalength Integer
FieldNumber Byte [NumberOfFields]
FieldData Byte[DatalLength]

Table rows have variable length and can contain different number of fields.

“NumberOfFields” field contains the number of table fields, present in a given string. If the value is 0 then
strings contains all the fields of the table (see. MTEStructure).

“DataLength” field contains the total length of table fields, present in a given string.

“FieldsNumber” field has a variable length. Its size equals to the value of “NumberOfFields” field. This
field contains numbers of fields (one byte per number), present in a given string. The number of field
corresponds to the number of an output field in the description of information objects (see
MTEStructure). If “NumberOfFields” is 0 then “FieldsNumber” is not available and all the fields'
numbers should be taken sequentially: 0, 1,2, 3 ... N.

“FieldsData” field (size equals to the size of “DataLength”, in bytes) contains set of table fields values.
The number of fields is defined by “NumberOfFields” and their total length — by “DatalLength”. Length
and type of each field are defined in the description of an information object (see MTEStructure). All
fields are represented in trading system text format (see appendix 5).

Example:

Let the description of information objects, received with MTEStructure, defines the “Trades” table
with the following input fields:

TRADES // "Trades"
TradeNum: ftInteger(1l2) // Number of a trade
TradeTime: ftChar (6) // Time of a trade
BuySell: ftChar(1l) // "B" - buy, "S" - sell
SecBoard: ftChar (4) // board code
SecCode: ftChar(12) // financial instrument code
Price: ftFloat(9) // price
Qty: ftInteger (10) // quantity of lots

© Moscow Exchange, 2022

38

The function is invoked:
MTEOpenTable (Idx, 'TRADES', '', True, Msqg);

As the result, Msg.Data field contains the following data:
{

0x00000000, // "Ref" field

0x00000002, // Two rows received

0x05, // First row has 5 fields

0x0000002F, // Data length is 47 bytes

#O0#3#4454%6, // Numbers of fields 0, 3, 4, 5, 6:
// these are "TradeNum","SecBoard","SecCode","Price","Qty" fields from
description

'000000120567CETSUSDO00000TOD0O002579000000000037"
// Fields values: 120567, "CETS", "USD0O00000TOD", 25.79, 37

0x03, // Second row contains 3 fields
0x16, // Data length is 22 bytes
#1434#4, // Numbers of fields 1, 3, 4:

// these are "TradeTime", "SecBoard","SecCode" fields from description
'102953CETSUSDO0000O0OTOM"
// Fields values: "10:29:53", "CETS", "USD0O0000OOTOM"

}

APPENDIX 3. BUFFER FORMAT OF THE MTEREFRESH FUNCTION

The Data field of the TMTEMsg/MTEMSG structure (pointer returned by the MTEOpenRefresh
function) contains several tables from the trading system and has the following format (for the description
of the basic types e.g. String, Integer, etc, see Appendix 4):

field type
TMTETables:

NuOfTables Integer

Table; TMTETable

Table> TMTETable

Tabley TMTETable

So the buffer can contains several tables. The format of this buffer is described in appendix 2.

APPENDIX 4. BASIC TYPES

MTESRL library uses the following structures to represent basic types:
Byte

One byte.

Integer

Four bytes in a format of x86 CPU (the little-endian byte goes first).

String

Structure as follows:

StringlLength: Integer
StringText: Byte[StringLength]

© Moscow Exchange, 2022

39

Byte[N]
Byte array of the length of N.

APPENDIX 5. FORMATTING OF A TABLE DATA RECEIVED FROM THE TRADING
SYSTEM

ftChar
String of characters right padded with blank spaces to correspond the required length.
ftinteger

Values of fields of ftinteger type (integer numbers) are transmitted in text format and left padded
with zeroes to correspond the required length.

ftFloat
(corresponds to the “PRICE” type in text interface specs)

Values of fields of ftFloat type (real numbers) are transmitted in text format without a decimal
point. The number of digits after the decimal point in ftFloat type fields for a specific security is
defined by the “DECIMALS?” field of “SECURITIES” table.

The ftFloat type fields must contain [DECIMALS] number of digits after the decimal point. For
example, the number 465.39 for a security with DECIMALS =4 must be represented as
“4653900”. The value of “46539” would have been processed by the trading system as 4.6539.

ftFixed

The ftFixed type fields are also passed as text strings without a decimal point. By default, fields
of this type have two digits after the decimal point. However, when using MTEStructure2 and
MTEStructureEx with Version>=2 (see Appendix 1), the exact number of decimal places is
passed.

ftDate

The ftDate type fields are strings with YYYYMMDD format.
ftTime

The ftTime type fields are strings with HHMMSS format.
ftFloatPoint

(corresponds to the “FLOAT” type in html interface specs)

Values of fields of FloatPoint type (real numbers) are transmitted in a text format with the
decimal point and should be supplemented to the required value with zeros on the left. This type
is available when obtaining information objects structure with MTEStructureEx function with
Version>=3 attribute (see. Appendix 1). In case of using MTEStructure and MTEStructure2 the
type is transmitted as a string (ftChar). Decimal point position is not strictly regulated. Decimal
point and, if needed, sign of the number (positive or negative), are considered at length
calculation. For example: ftFloatPoint(9): "001.45712", ftFloatPoint(16): *-0000012071000.5".

ftMemo

String of characters of arbitrary length. This type is available when obtaining information objects
structure with MTEStructureEx function with Version>=5 attribute (see. Appendix 1). In case of
using MTEStructure and MTEStructure2 the type is trimmed to the size specified and transmitted
as a fixed length string (ftChar). The structure containing:

e MemolLen — string length in text format and left padded with zeroes to correspond the
length specified,;

e Memo — character sequence of the length MemoLen bytes

For example: ftMemo(6): "000015Hello, world!!!" stands for 15 byte length string
"Hello, world!!! ™.

© Moscow Exchange, 2022

40

Note:

An empty value (NULL) can be specified in a field of any type; for this, a string of all blanks of
the required length is used.

© Moscow Exchange, 2022

