

ASTS Connectivity API

Application programming interface

for connecting external systems to the

Moscow Exchange ASTS trading &

clearing system

(MTESRL library v. 4.4)

© Moscow Exchange, 2022

© Moscow Exchange, 2022

2

TABLE OF CONTENTS

INTRODUCTION .. 3

MTESRL LIBRARY ... 3

HARDWARE AND SOFTWARE REQUIREMENTS 3

WORK SCENARIO ... 4

CONNECTION TO THE SERVER ... 4

CONNECTING TO ASTS Bridge .. 4

SELECTING THE LIST OF BOARDS ... 9

GETTING SYSTEM AND SERVICE INFORMATION 10

BRIDGE SERVER DETAILS ... 10
BRIDGE CLIENT LIBRARY VERSION ... 11
GETTING CONNECTION STATUS ... 11

GETTING CONNECTION STATISTICS .. 12

GETTING DESCRIPTION OF INFORMATION OBJECTS 13

WORKING WITH INFORMATION OBJECTS .. 15

TRANSACTIONS EXECUTION .. 15

WORKING WITH TABLES .. 19
Opening a table .. 19

Request for update .. 20

Closing the table .. 21

Example ... 21
Notes on working with tables ... 22

MEMORY USE OPTIMIZATION .. 23

RECOVERY AFTER FAILURES AT ASTS BRIDGE SERVER 24

BACKING UP BRIDGE INTERNAL STRUCTURE ... 24
BRIDGE INTERNAL STRUCTURE RECOVERY ... 26
EXAMPLE OF RECOVERY AFTER THE FAILURE ... 28

SELECTIVE OPEN OF TABLES FROM THE SNAPSHOT ... 29

CLOSING CONNECTION SESSION .. 31

ERROR MESSAGES ... 31

ERROR CODES ... 32

APPENDIX 1. BUFFER FORMAT OF THE MTESTRUCTURE,
MTESTRUCTURE2 AND MTESTRUCTUREEX FUNCTIONS 34

APPENDIX 2. BUFFER FORMAT OF THE MTEOPENTABLE FUNCTION 37

APPENDIX 3. BUFFER FORMAT OF THE MTEREFRESH FUNCTION 38

APPENDIX 4. BASIC TYPES .. 38

APPENDIX 5. FORMATTING OF A TABLE DATA RECEIVED FROM THE TRADING

SYSTEM .. 39

© Moscow Exchange, 2022

3

INTRODUCTION

ASTS Connectivity API should be used to connect any types of external systems to the Moscow Exchange

ASTS trading & clearing system. These could be: brokerage systems, market data distribution systems,

backoffice applications, HFTs and other client software.

System architecture is shown on the following diagram:

This document details creation of client applications using the ASTS Connectivity API.

All the required functions are included into the MTESrl library.

MTESRL library

MTESrl library provides bidirectional connection to the ASTS trading & clearing system (TS) and

contains functions for both receiving data from TS (general market data such as trades, quotes, financial

instruments as well as company specific trading and clearing information) and executing transactions

(order entry and withdrawal). Library supports all the Moscow Exchange markets powered by the ASTS

platform:

Equity & bond, FX and precious metals, money (loans and deposits) markets.

HARDWARE AND SOFTWARE REQUIREMENTS

MTESrl library is compatible with the following operating systems:

• Windows 10 or Windows 2016/2019, 32 or 64 bit (mtesrl[64].dll);

• Linux OS family, 64 bit (libmtesrl.so). Note: The cdecl calling convention is used.

There are two versions of MTESRL library which differ in way of connection to ТS:

• Connection to the trading system through ASTS Bridge (using TCP/IP protocol);

• Direct connection to the trading system. This version of library can only be used at the co-

location facility.

Minimal hardware requirements for MTESRL:

© Moscow Exchange, 2022

4

• CPU: Intel Core or compatible 1.4GHz or higher. 3GHz x4 core is recommended.

• RAM – 4GB or more. 16GB is recommended.

• HDD with 10 GB free space for logging.

• Ethernet network card.

WORK SCENARIO

The typical work scenario is as follows:

1. Connect to the server.

2. Download the information object metadata (types, tables and transactions).

3. Open and refresh tables. Send transactions.

4. Save snapshots (optional).

5. Close the connection.

There are interface modules for library as well as MS Visual C, Java, Delphi and C# samples in the Demo

subdirectory of installation folder.

CONNECTION TO THE SERVER

CONNECTING TO ASTS Bridge

MTEConnect function is used to connect to the trading/clearing system through the ASTS Bridge Server.

This function should be called before proceeding to any other library functions.

C++

int32 WINAPI MTEConnect(char *Params, char *ErrorMsg);

Pascal

function MTEConnect(Params, ErrorMsg: LPSTR): Integer; stdcall;

Arguments:

Params

Connection parameters. This is a pointer to an ASCIIZ-string, which contains the list of

parameters separated with the “end of line” and “carriage return” symbols (0x0D, 0x0A) with the

following syntax:

Parameter1=Value1

Parameter2=Value2

...

ParameterN=ValueN

Denominations of parameters and their possible values depend on the method of connection of a

specific library to the trading system. The following parameters are available for the MTESRL

library:

CONNECTING TO ASTS BRIDGE

HOST List of comma-separated IP addresses with ports of the ASTS Bridge

server; for example: “194.186.240.85:20006,194.186.240.73:20006”.

PREFERREDHOST Preferred host address. If not defined, server with the smallest number

of users from the “HOST” list is used.

SERVER Server ID, for example: “EQ_TEST”.

USERID User ID in the trading/clearing system.

PASSWORD User password in the trading/clearing system.

INTERFACE Trading system interface ID. For example, “IFCBroker_26”.

BOARDS List of trading boards that user is going to work with; for example:

© Moscow Exchange, 2022

5

“TQBR,TQOB,PSEQ” (this is an optional parameter, if not defined, all

boards are available).

COMPRESSION Compression of transmitted data:

 “0” – no compression;

 “1” – ZLIB compression;

 “2” – compress large network packets with BZIP.

1 is used by default. Support for BZIP may be removed in future.

Encryption and digital signature "Validata" configuration

Signing - constant value:

Validata

Signing.ProfileName - cryptographic “Validata” library profile name (optional; if

not defined then neither digital signature nor encryption will be used); the old PROFILENAME

parameter is still supported;

The profile name must be prefixed by one the following:

xpki: to use qualified certificates (GOST) with Validata CSP version 5;

zpki: to use qualified certificates (GOST) with Validata CSP version 6;

rpki: to use not qualified certificates (RSA).

E.g.: if the digital signature profile is named DefaultGost, then

Signing.ProfileName=zpki:DefaultGost parameter should be defined.

Signing.InitFlags - a combination of Validata initialization flags (optional):

1 - Do not update the list of recalled certificates (CRL) at initialization;

4 - Do not use network directories;

Signing.Type, Signing.BasePath and Signing.LdapPath - another method to

initialize Validata. It could be useful when Validata has been installed with another user’s system

account – for example, when the client application is started as a service. In such situation there

will be no profile name in user’s registry branch and the ProfileName could not be used. Values

for these parameters should be taken from the appropriate user’s branch in the system registry:

Signing.Type - type of the crypto-provider being used:

Validata CSP - Validata CSP crypto-provider (zpki1.dll/xpki1.dll);

Microsoft CSP - Microsoft crypto-provider for non-residents (rpki1.dll);

Signing.BasePath - take file path from the registry key, corresponding to the

profile (N = 0,1,2…):

HKEY_CURRENT_USER\Software\Validata\xpki\Profiles\<N>\store_0

(Validata CSP version 5)

HKEY_CURRENT_USER\Software\Validata\zpki\Profiles\<N>\store_0

(Validata CSP version 6)

HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_0

(Microsoft CSP)

E.g., if

«pse://signed/C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST_CRYP

T\local.pse» value is stored in registry key, you should specify

«C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST_CRYPT\» in this

parameter.

Signing.LdapPath is stored in registry key:

HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_2

© Moscow Exchange, 2022

6

Channel encryption configuration

ASTSBridge version 4.4.0 and higher supports TLS 1.2 channel encryption. Validata

CSP version 6 and higher does not support channel encryption. Encryption and digital signing

can be switched on/off separately.

Encrypt - channel encryption algorithm:

<empty> - do not use channel encryption;

OpenSSL - use TLS 1.2 for channel encryption;

Validata - use Validata CSP for channel encryption in packet mode. The

Encrypt.ProfileName= parameter should be also specified. This

mode is extremely slow and should not be used in production

environment;

Any - if TLS 1.2 protocol is supported then use TLS 1.2. Otherwise, if

Validata digital signature is turned on then use Validata CSP

(either in channel or packet encryption mode). Otherwise, do not

use channel encryption;

Parameter is not specified - if Validata digital signature is turned on

and TLS 1.2 protocol is supported then use TLS 1.2, otherwise, use

Validata CSP (either in channel or packet encryption mode). If

Validata signature is turned off then do not use channel encryption.

It is recommended to use the Encrypt=Any parameter if channel encryption is required.

Encryption and digital signature «TUMAR» configuration

You need to install “Validata certificate store” software to work with TUMAR crypto-

provider. You should configure two profiles there: one for digital signature and other for

encryption. Refer to “Using TUMAR keys in ASTSBridge.pdf” manual for software installation

and configuration instructions.

Signing, Encrypt - constant value:

Validata

Signing.ProfileName - «Validata» profile name for digital signature (optional, if

not defined then digital signature will not be used).

Encrypt.ProfileName - «Validata» profile name for encryption (optional, if not

defined then encryption will not be used).

rpki: prefix should be used before profile name in both parameters. E.g.: if the digital

signature profile is named TUMAR_SIGN, then

Signing.ProfileName=rpki:TUMAR_SIGN parameter should be defined.

Signing.InitFlags, Encrypt.InitFlags - a set of initialization flags (optional):

1 - Do not update the list of recalled certificates (CRL) at initialization;

Signing.Type, Signing.BasePath,

Encrypt.Type, Encrypt.BasePath - another method to initialize TUMAR. It could be

useful when “Validata certificate store” software has been installed with another user’s system

account – for example, when the client application is started as a service. In such situation there

will be no profile name in user’s registry branch and the ProfileName could not be used. Values

for these parameters should be taken from the appropriate user’s branch in the system registry:

Signing.Type, Encryption.Type - constant value:

Microsoft CSP

© Moscow Exchange, 2022

7

Signing.BasePath, Encryption.BasePath - take file path from the registry key,

corresponding to the profile (N = 0,1,2…):

HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_0

E.g., if

«pse://signed/C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST_CRYP

T\local.pse» value is stored in registry key, you should specify

«C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST_CRYPT\» in this

parameter.

CONNECTING VIA «EMBEDDED» BRIDGE AT COLOCATION FACILITY

SERVER Trading system server name, e.g., «GATEWAY».

SERVICE Trading system service name, e.g., «gateway». Port numbers may be

specified instead, e.g. 18011/18012.

BROADCAST Broadcast address for the server search to access the trading system,

e.g., «10.63.1.255,10.63.3.255,10.61.1.255,10.61.3.255».

PREFBROADCAST Preferred broadcast server address.

USERID Client user ID in trading/clearing system.

PASSWORD User password in trading/clearing system.

INTERFACE ID of the bridge interface to work with.

BOARDS List of boards that the user is going to work with; for example:

“TQBR,TQOB,PSEQ” (this is the optional parameter; if not defined,

all boards are available).

CACHEFOLDER Directory for caching interface description, downloaded from trading

system. If this parameter is not defined, caching is not performed, and

interface is downloaded from trading system at each connection.

LOGLEVEL Level of internal logging:

 “0” – logging is disabled (default value);

 “1“ – “30“ – logging level.

COMPRESSION

Compression:

 “0” – no compression;

 “1” – compression is enabled (default value).

IPSRCORDER List of IP addresses of network interfaces that are allowed to connect to

Trading System. The order of IP addresses in the list defines the

priority. If RestrictList=0, connection attempts from all other addresses

are allowed, but with a lower priority. If RestrictList=1, only attempts

from specified addresses are available, e.g.“192.168.126.1,

192.168.56.1”.

RESTRICTLIST “0“ – searching for gateways is allowed from all available network

interfaces (default value);

“1“ – searching for gateways is allowed only from interfaces, listed in

IpSrcOrder attribute.

DIRECTCONNECT “0” – use server UDP discovering (default value);

“1” - do not use server UDP discovering, connect directly to Broadcast

addresses via TCP.

ALSO, IN ALL OF THE CASES THE FOLLOWING PARAMETERS ARE SUPPORTED:

TIMEOUT Server (i.e. trading system) request execution timeout. For mtesrl.dll –

in milliseconds, for embedded mtesrl.dll – in seconds. Default value is

30 seconds. If reply from server is not received within specified time,

the reconnection procedure will be initiated. If connection interrupt is

registered before the timeout expire – reconnection procedure will

begin earlier.

LOGGING String in the format “N,M”, where first digit “N” – API MTESRL calls

© Moscow Exchange, 2022

8

logging level.

 “0” – no logging (do not create log-file);

 “1” – log errors only;

 “2” – log library function calls;

 “3” – log contents of table;

 “4” – log contents of table and field numbers;

 “5” - log TSMR protocol messages (only for embedded version).

Second digit “M” – connection statistics logging level. Statistics is

stored in a separate file formatted «mtesrl-YYYMMDD-<userid>-

stats.log».

 “0” – do not collect statistics;

 “1” – collect statistics on query execution time and the trading system

response size;

 “2” - Collect statistics and requests distribution on requests to the

tables.

Default value for logging is 2,2.

For a complete logging disabling, use “LOGGING=0,0”

Log files are kept for 7 calendar days. All the older logs are deleted

when the MTEConnect function is called.

KEEPLOGS Number of days to keep the log-files (7 by default). Value “0” means

do not delete old log-files.

RETRIES Number of attempts to reconnect after the loss of connection with

ASTS Bridge Server (10 by default).

CONNECTTIME Maximum reconnect time. For mtesrl.dll – in milliseconds, for

embedded mtesrl.dll – in seconds. Default is 1 minute. Any value

between 5 and 300 sec. can be specified. Reconnection lasts not more

than [RETRIES] attempts and no longer than [CONNECTTIME] ms,

depending on which event comes first. This value is approximate and

may differ from a real one for several seconds.

LOGFOLDER A folder to store the log files. By default, library folder is used.

LOGPREFIX Specify unique string prefix to differentiate log-file names when

connecting to several trading systems with the same user identifier.

FEEDBACK Free formatted text string, describing the client system, connected to

the bridge. For example, «FondAnalytic v3.5.456, e-mail:

admin@fondru.ru».

LANGUAGE Specify the language for messages issued by the Bridge and MTESRL

client library. To change the language use transaction

CHANGE_LANGUAGE. Possible values are “Russian” and

“English”.

TRANSPORT Transport library name: TSMR or Mustang. If not specified, TSMR is

used.

JUMBOSIZE The parameter can be used with Mustang transport only. Turns on large

data packets received from Trading System.

 “0” – 60000 (use standard packet size), default value;

 “1” – 128КБ;

 “2” – 256КБ;

 “3” – 512КБ.

ErrorMsg

A pointer to a buffer of at least 256 bytes to store error description, in case an error occurs.

Returned value:

If connection is successful, the function returns a descriptor of the established connection (value

that is greater or equal to MTE_OK). The received connection descriptor is used during

execution of all MTExxxx functions.

If error occurs, one of the MTE_xxxx error codes is returned and error description is placed to

ErrorMsg argument.

© Moscow Exchange, 2022

9

Example:

Connect to the ASTS Bridge server.

C++

int32 Idx;

char ErrorMsg[255];

...

Idx = MTEConnect(“HOST=192.168.0.10:15005\rSERVER=EQ_TEST\r

USERID=MU0000100001\rINTERFACE=IFCBroker_26”, ErrorMsg);

if(Idx < MTE_OK)

{

fprintf(stderr, “Error while establishing the connection: %s”,

ErrorMsg);

 exit(1);

}

else

 fprintf(stdout, “Connection established.”);

Pascal

Idx: Integer;

ErrorMsg: TMTEErrorMsg;

...

Idx := MTEConnect('HOST=192.168.0.10:15005'#13#10'SERVER=EQ_TEST'

#13#10'USERID=MU0000100001'#13#10'INTERFACE=IFCBroker_26',

@ErrorMsg);

if Idx < MTE_OK then

begin

 Writeln(Error while establishing the connection: ' + ErrorMsg);

 Halt;

end

else

 Writeln('Connection established.');

SELECTING THE LIST OF BOARDS

Usually, the list of boards is defined in “BOARDS=” parameter, when calling MTEConnect function.

But also can be selected later, using MTESelectBoards. It’s allowed to use only one method of these

two for selecting boards. After calling MTESelectBoards, close all the tables and open them again,

because all the tables content depends on selected boards.

С++

int32 WINAPI MTESelectBoards(int32 Idx, char * BoardsList,

 char *result);

Pascal

function MTESelectBoards(Idx: Integer; BoardList: LPSTR;

 ResultMsg: LPSTR): Integer; stdcall;

Аргументы:

Idx

A descriptor of connection, for which, the data should be received.

BoardList

A pointer to the string, containing a list of boards' identifiers, separated by comma. For example,

“TQBR,TQNE,RPMA”.

ResultMsg

A pointer to a buffer of at least 256 bytes to store the text string with transaction result in case of

successful execution.

Returned value:

If the transaction has been processed by the trading system, it returns the following:

© Moscow Exchange, 2022

10

MTE_OK – boards selected;

MTE_TRANSREJECTED - request has been processed, but rejected by the trading

system (an invalid board specified, no rights to perform, etc.);

MTE_TSMR - fatal error occurred, when executing the query (the loss of connection

with the trading system, etc.).

A text string with query result is placed into ResultMsg argument.

If error occurs, one of the MTE_xxxx error codes is returned. In this case a value of ResultMsg is

not defined.

GETTING SYSTEM AND SERVICE INFORMATION

BRIDGE SERVER DETAILS

To get additional details about the server side of ASTS Bridge, use MTEGetServInfo function.

C++

int32 WINAPI MTEGetServInfo(int32 Idx, char ** ServInfo, int *Len);

Pascal

function MTEGetServInfo(Idx: Integer; var ServInfo: LPSTR;

 var Len: Integer): Integer; stdcall;

Arguments:

Idx

A descriptor of connection, for which, the data should be received.

ServInfo

A pointer to a buffer to store returned values.

Len

A pointer to a variable to store the length of returned data.

Returned value:

If successful, MTE_OK is returned and ServInfo points to a buffer of the following structure:

Field Data type

(IBM PC)

Length,

bytes

Description

Connected_To_ASTS INTEGER 4 Connection status.

Possible values:

 0 – not connected;

 1 - connected to production environment;

 2 - connected to test environment;

 -1 – connected to production environment, test

trading session is in progress.

Session_Id INTEGER 4 Current trading session internal ID. Changes each

session.

ASTS_Server_Name CHAR 33 Access server logical name. For example,

GATEWAY, FOND_GATEWAY, etc. Can be used to

identify a market and type of the system (test or

production).

Version_Major CHAR 1 ASTS Bridge major version number.

Version_Minor CHAR 1 ASTS Bridge minor version number.

Version_Build CHAR 1 ASTS Bridge build number.

This and two previous fields identify the version as

Major.Minor.Build.

Beta_version CHAR 1 ASTS Bridge beta version flag. If not 0, then, this is

beta version with a corresponding number.

Debug_flag CHAR 1 ASTS Bridge debug version flag. If not 0, then this is

a debug version.

© Moscow Exchange, 2022

11

Test_flag CHAR 1 ASTS Bridge test release flag. If not 0 then, this is a

test version.

Start_Time INTEGER 4 Session start time (defined in the Bridge

configuration). Specified as HHMMSS. Note that this

is the integer.

Stop_Time_Min INTEGER 4 Bridge shutdown time (defined in the Bridge

configuration). Specified as HHMMSS. Note that this

is the integer.

Stop_Time_Max INTEGER 4 Equals to Stop_Time_Min.

Next_Event INTEGER 4 Next expected event in the server schedule. Possible

values:

0 – waiting for a new trading session startup;

1 – waiting for a current trading session end.

Event_Date INTEGER 4 Date of an expected event as DDMMYYYY.

Note that this is the integer.

BoardsSelected ASCIIZ

string

variable Comma separated list of selected trading boards.

UserID CHAR,

null

terminated

string

13 User ID used by the server for current connection.

SystemId CHAR 1 Trading system type:

“P” – equities & bonds or money market;

“C” – FX market;

“F” – derivatives market.

ServerIp ASCIIZ

string

variable Gateway IP, e.g., «195.1.3.51».

If error occurs, one of the MTE_xxxx error codes is returned.

BRIDGE CLIENT LIBRARY VERSION

MTEGetVersion function is used to get the client library version number.

C++

char * WINAPI MTEGetVersion();

Pascal

function MTEGetVersion: LPSTR; stdcall;

Arguments:

none

Returned value:

A pointer to an ASCIIZ string containing a text description of client library version. For example:

“MTESrl library 3.8.93”.

GETTING CONNECTION STATUS

To obtain the current status of connection to ASTS Bridge server, MTEConnectionStatus function

should be used.

© Moscow Exchange, 2022

12

С++

int32 WINAPI MTEConnectionStatus(int32 Idx);

Pascal

function MTEConnectionStatus(Idx: Integer): Integer; stdcall;

Arguments:

Idx

A descriptor of connection, for which, the data should be received.

Returned value:

One of the following MTE_xxx codes:

MTE_OK Connection established.

MTE_INVALIDCONNECT Invalid connection descriptor.

MTE_SRVUNAVAIL ASTS Bridge server is not available.

MTE_TEUNAVAIL Trading system is not available.

GETTING CONNECTION STATISTICS

To obtain a statistical data on the connection (connection flags, amount of transferred data, etc.)

MTEConnectionStats function can be used.

C++

int32 WINAPI MTEConnectionStats(int32 Idx, ConnectionStats * Stats);

Pascal++

function MTEConnectionStats(Idx: Integer; var Stats: TMTEConnStats):

 Integer; stdcall;

Idx

A descriptor of connection, for which, the data should be received.

© Moscow Exchange, 2022

13

Returned value:

In case of success function returns MTE_OK and fills the Stats structure by statistical data on the

connection. Stats structure has the following format:

Size int32 Input field, must be filled sizeof(Stats).

Properties uint32 Connection flags, combination of values

ZLIB_COMPRESSED, FLAG_ENCRYPTED,

FLAG_SIGNING_ON.

SentPackets uint32 Number of packets, sent to ASTS Bridge server.

RecvPackets uint32 Number of packets, received from ASTS Bridge server.

SentBytes uint32 Number of bytes, sent to ASTS Bridge server, considering

compression.

RecvBytes uint32 Number of bytes, received from ASTS Bridge server,

considering compression.

ServerIpAddress uint32 ASTS Bridge server IP-address.

ReconnectCount uint32 Number of reconnections to ASTS Bridge server.

SentUncompressed uint32 Number of bytes, sent to ASTS Bridge server, not taking

compression into account.

RecvUncompressed uint32 Number of bytes, received from ASTS Bridge server, not

taking compression into account.

ServerName char[64] ASTS Bridge server identifier.

TsmrPacketSize uint32 Size of packet of TSMR protocol, bytes (only for colocation

version).

TsmrSent uint32 Number of bytes, sent to TS via TSMR protocol (only for

colocation version).

TsmrRecv uint32 Number of bytes, received from TS via TSMR protocol (only

for colocation version).

If error occurs, one of the MTE_xxxx error codes is returned.

GETTING DESCRIPTION OF INFORMATION OBJECTS

Information objects description contains a list of tables, transactions, their fields and some additional

objects, available to the client. MTEStructure, MTEStructure2 and MTEStructureEx functions

are used to get the description. MTEStructure2 and MTEStructureEx functions return an expanded

set of trading system objects characteristics (see Appendix 1).

MTEStructureEx completely covers all the capabilities of two other functions: MTEStructure call

is similar to MTEStructureEx call with Version=0 attribute, MTEStructure2 call is similar to

MTEStructureEx call with Version=2 attribute.

C++

int32 WINAPI MTEStructure(int32 Idx, MTEMsg **Msg);

int32 WINAPI MTEStructure2(int32 Idx, MTEMsg **Msg);

int32 WINAPI MTEStructureEx(int32 Idx, int32 Version, MTEMsg **Msg);

Pascal

function MTEStructure(Idx: Integer; var Msg: PMTEMsg): Integer; stdcall

function MTEStructure2(Idx: Integer; var Msg: PMTEMsg):Integer;stdcall;

function MTEStructureEx(Idx: Integer; Version: Integer; var Msg:

 PMTEMsg):Integer; stdcall;

© Moscow Exchange, 2022

14

Arguments:

Idx

A descriptor of connection, for which, the data should be received.

Version

[Only for MTEStructureEx]. The version of the information objects description. Possible

values are in range from 0 to 5. The higher the value is, the more detailed description will be

received.

Starting from version 3 this argument allows to get additional information about the trading

system interface. Below are the supported value options. They can be combined with each other

and with the version number using the binary OR operator.

Version Option Description

>= 3 STRUCTURE_LOCALIZATION

= 0x0100
The ‘title’ and the ‘description’ fields will be provided

on all the supported languages. Instead of the String

field type the following structure will be used:
NumberOfLanguages Integer

String1 String

String2 String

...

StringN String

Each string will start with one of the language prefixes,

such as ‘ru:’, ‘en:’ or ‘uk:’. For example, ‘ru:Номер

заявки’, ‘en:Order number'.

Msg

An address of a variable (of the type “a pointer to a TMTEMsg/MTEMSG”) to store a pointer to

the buffer, containing information objects description. Memory for this buffer is allocated by the

library. Buffer format for MTEStructure and MTEStructure2 functions is described in

Appendix 1. TMTEMsg structure is defined as follows:

С++

typedef struct {

 int32_t DataLen; // The length of the data to follow

 char Data[1]; // Pseudo variable

} MTEMSG;

// data of the DataLen length directly follows this structure.

Pascal

PMTEMsg = ^TMTEMsg;

TMTEMsg = record

 DataLen: Integer; // The length of the data to follow

 Data: record end; // Variable length data

end;

Returned value:

In case of success, function returns MTE_OK and places a buffer with the description to Msg

argument.

If error occurs, one of the MTE_xxxx error codes is returned. If MTE_TSMR error code is

returned, then the data field of Msg structure contains the error message of [DataLen] length.

Example:

Get the description of available information objects for the Idx session.

С++

int32 Idx; // Initiated by the MTEConnect

char ErrorMsg[255];

MTEMsg *Msg;

char *Data;

© Moscow Exchange, 2022

15

int32 err;

...

if ((err = MTEStructure(Idx, &Msg)) != MTE_OK) {

 if (Err == MTE_TSMR) {

 Data = (char *)(Msg + 1);

 fprintf(stderr, “Error: %s\n”, Data);

 } else

 fprintf(stderr, “Error: %s\n”, MTEErrorMsg(Err));

} else

 fprintf(“Information objects description has been

received.\n”);

Data = (char *)(Msg + 1); // Actual data

Pascal

Idx: Integer; // Initiated by the MTEConnect

Err: Integer;

Msg: PMTEMsg;

S: string;

Data: PAnsiChar;

...

Err := MTEStructure(Idx, Msg);

if Err <> MTE_OK then

 if Err = MTE_TSMR then begin

 SetString(S, @Msg.Data, Msg.DataLen);

 Writeln('Error: ' + S);

 end else

 Writeln('Error: ' + MTEErrorMsg(Err))

else

 Writeln(Information objects description has been received.);

Data := @Msg.Data; // Actual data

WORKING WITH INFORMATION OBJECTS

Working with information objects includes working with tables and transactions execution.

TRANSACTIONS EXECUTION

All the transactions, such as order entry, withdrawal, etc. are executed with MTEExecTrans,

MTEExecTransIP and MTEExecTransEx functions.

C++

int32 WINAPI MTEExecTrans(int32 Idx, char *TransName, char *Params,

 char *ResultMsg);

int32 WINAPI MTEExecTransIP(int32 Idx, char *TransName, char *Params,

 char *ResultMsg, int32 ClientIP);

Pascal

function MTEExecTrans(Idx: Integer; TransName, Params,

 ResultMsg: LPSTR): Integer; stdcall;

function MTEExecTransIP(Idx: Integer; TransName, Params,

 ResultMsg: LPSTR; ClientIP: Integer): Integer; stdcall;

Arguments:

Idx

A descriptor of connection, on which, the transaction is being executed.

TransName

A pointer to an ASCIIZ string containing the name of transaction. Available names can be

obtained with MTEStructure, MTEStructure2 or MTEStructureEx functions.

© Moscow Exchange, 2022

16

Params

A pointer to an ASCIIZ string containing the transaction parameters. The length of the string and

its value must match the description of transaction input fields (obtained with MTEStructure,

MTEStructure2 or MTEStructureEx functions). All fields have to be submitted as text,

according to the following trading system formatting:

ftChar Blank spaces are appended to correspond to the string length, defined in the

field description. For example, for a ftChar(12) field the string "USER" has

to be presented as "USER ".

ftInteger Zeros are added to the left side to reach the required length. For example,

the value 127 of the ftInteger(10) type has to be presented as “0000000127”.

ftFixed Two symbols after the decimal point are kept, the decimal point itself is

deleted, and zeros are added to the left side to reach the required length. For

example, value 927.4 of the ftFixed(8) type has to be transformed into

“00092740” string.

ftFloat N symbols after the decimal point are kept, the decimal point itself is

deleted, zeros are added to the left side to reach the required length. The

value of N depends on the price precision of a given financial instrument.

For example, value 26.75 of the ftFloat(9) type for the instrument with N=4,

has to be presented as “000267500”.

ftDate Specified as YYYYMMDD. For example, 24 August 1999 has to be

presented as "19990824".

ftTime Specified as HHMMSS. For example, 16:27:39 is to be presented as

"162739".

ftFloatPoint Zeros are added to the left side to reach the required length, the decimal

point is kept. For example, value 5.617 of the ftFloatPoint(9) type has to be

transformed into "00005.617" string

Note: An empty value (NULL) can be specified in a field of any type; for this, a

string of all blanks of the required length is used.

ClientIp

(For MTEExecTransIP function) IP-address of the client, on whose behalf, the transaction is

performed. To be used in interfaces for technical centers and regional exchanges.

ResultMsg

A pointer to a buffer of at least 256 bytes to store a text string containing the result of transaction

execution, in case of success.

Returned value:

If transaction has been processed by the trading system, then, one of the following codes is

returned:

MTE_OK – transaction executed;

MTE_TRANSREJECTED – the transaction has been received, but rejected by the

trading system (incorrect arguments, no rights to execute transactions, etc.);

MTE_TSMR - fatal error during the transaction execution (connection to the trading

system is lost, etc.).

A text string with the result of the transaction processing is stored in ResultMsg argument.

If error occurs, one of the MTE_xxxx error codes is returned. In this case a value of ResultMsg is

not defined.

Example:

Let the description of an object (received with MTEStructure) contains “Enter an order”

transaction with the following fields:

ORDER // Transaction name

 BuySell: ftChar(1) // "B" - buy, "S" - sell

 SecBoard: ftChar(4) // Board code

 SecCode: ftChar(12) // Security code

 Price: ftFloat(9) // Price

© Moscow Exchange, 2022

17

 Quantity: ftInteger(10) // Number of lots

The following code is used to submit an order to buy 14 items of the "USD000000TOD" on

"CETS" board at the price of 26.15 (for this security, the price precision is 4 symbols after the

decimal point):

С++

int32 Idx; // Initiated by MTEConnect

int32 Err;

char *ResultMsg;

...

Err = MTEExecTrans(Idx, “ORDER”,

“BCETSUSD000000TOD0002615000000000014”, ResultMsg);

if(Err == MTE_OK)

 fprintf(stdout,”Transaction executed: %s\n”, ResultMsg);

else if(Err == MTE_TSMR)

 fprintf(stdout,”Transaction IS NOT executed: %s\n”, ResultMsg);

else fprintf(stderr,”Error: %s\n”, MTEErrorMsg(Err));

Pascal

Idx: Integer; // Initiated by MTEConnect

Err: Integer;

ResultMsg: TErrorMsg;

...

Err := TEExecTrans(Idx, 'ORDER',

'BCETSUSD000000TOD0002615000000000014', @ResultMsg);

case Err of

 MTE_OK: Writeln('Transaction executed: ' + ResultMsg);

 MTE_TSMR, MTE_TRANSREJECTED: Writeln('Transaction IS NOT

executed: ' + ResultMsg);

 else Writeln('Error: ' + MTEErrorMsg(Err));

end;

Note 1: all transactions or table data requests are sent sequentially within one connection. It means that a

transaction or a table data request can be sent to the trading system only after the reply to the previous one

is received. To avoid any related delays it is recommended:

• To use separate connections to perform transactions and to request table data.

• To use load balancer to distribute transactions between connections in case of high transaction

volume.

Note 2: when connected to independent trading and clearing systems, the “change password” transaction

should be executed as follows: first, send the CHANGE_PASSWORD transaction to the Trading System,

and after its successfully executed, send the same CHANGE_PASSWORD transaction to the Clearing

System. This is necessary for the automatic reconnect to the Clearing System to perform smoothly.

New transactions supported by the trading system can return multiple replies or string, longer than 255

symbols. For that kind of transactions, it’s recommended to use MTEExecTransEx function, which

returns an array of replies and text messages of unlimited length:

C++

int32 WINAPI MTEExecTransEx(int32 Idx, char *TransName, char *Params,

 int32 ClientIp, MTEExecTransResult *Reply);

Pascal

function MTEExecTransEx(Idx: Integer; TransName, Params: LPSTR;

 ClientIp: Integer; var Reply: TMTEExecTransResult): Integer; stdcall;

Arguments:

Idx

A descriptor of connection, on which, the transaction is being executed.

© Moscow Exchange, 2022

18

TransName

A pointer to an ASCIIZ string containing the name of transaction. Possible names can be

obtained by calling MTEStructure, MTEStructure2 or MTEStructureEx

functions.

Params

A pointer to an ASCIIZ string containing the transaction parameters. The length of the string and

its value must match the description of transaction input fields, obtained by calling

MTEStructure/MTEStructure2 or MTEStructureEx functions. All fields have to be

submitted as text, with the proper formatting (see. MTEExecTrans).

ClientIp

IP-address of the client, on whose behalf, the transaction is performed. To be used in interfaces

for technical centers and regional exchanges.

Reply

A pointer to a text string, in which, the transaction execution result and trading system reply are

stored. The TMTEExecTransResult / MTEExecTransResult structure is defined as:

С++

typedef struct TransResult {

 // a number of entries in "replies" field

 uint32_t replyCount;

 // a pointer to an array of MTETransReply entries

 MteTransReply* replies;

} MteTransResult;

typedef struct TransReply {

 int32_t errCode; // Returned code (see. Returned values)

 int32_t msgCode; // A number of message in Trading System

(which is indicated by brackets in the text)

 char* msgText; // Trading System text message

 int32_t paramCount; // A number of parameters in the reply

 MteTransParam* params; // An array of parameters in the

reply

} MteTransReply;

Pascal

TMTEExecTransResult = record

 // a number of entries in "Replies" field

 ReplyCount: Longword;

 // a pointer to an array of TMTETransReply entries

 Replies: PMTETransReplies;

end;

// single reply of the Trading System

TMTETransReply = record

 ErrCode: TMTEResult; // Returned code (see. Returned values)

 MsgCode: Integer; // A number of message in Trading System

(which is indicated by brackets in the text)

 MsgText: PAnsiChar; // Trading System text message

 ParamCount: Integer; // A number of parameters in the reply

 Params: PMTETransParams; // An array of parameters in the

reply

end;

Most of transactions return only one single reply, so ReplyCount value is “1” and

Replies contains 1 entry. An example of transaction, which returns more than one reply is

ORDER_AMEND.

© Moscow Exchange, 2022

19

Returned value:

If the transaction has been processed by trading system, the following is returned:

• MTE_OK – transaction successfully executed;

• MTE_TRANSREJECTED – the transaction has been processed, but rejected by the trading

server (invalid board specified, no rights to perform, etc.);

• MTE_TSMR - fatal error occurred, when processing the transaction (the loss of connection

with the trading system, etc.).

Additional parameters that may be present in a reply. Number of parameters is specified in

ParamCount.

• ST – time when transaction processing started by the trading engine in the following format:

ST=HHMMSSmicroseconds

• ON – order number

• IN – public order number in the FAST UDP Market Data feed; only available for orders that

are published in this feed.

WORKING WITH TABLES

Working with tables includes the following steps:

1. Opening a table

2. Periodically requesting for updates

3. Closing the table

OPENING A TABLE

To start working with a table, first it's necessary to call MTEOpenTable function. This function opens a

table and returns the content of the table partially or at once..

C++

int32 WINAPI MTEOpenTable(int32 Idx, char *TableName, char *Params,

 int32 Complete, MTEMSG **Msg);

Pascal

function MTEOpenTable(Idx: Integer; TableName, Params: LPSTR;

 Complete: BOOL; var Msg: PMTEMsg): Integer; stdcall;

Arguments:

Idx

A descriptor of connection, obtained by MTEConnect.

TableName

A pointer to an ASCIIZ string containing the name of the table. Available names can be obtained

with MTEStructure, MTEStructure2 or MTEStructureEx functions.

Params

A pointer to an ASCIIZ string containing the parameters of the table. The length of the string and

its value must match the description of table input fields, received with MTEStructure,

MTEStructure2 or MTEStructureEx. All fields have to be submitted as a text with the

proper formatting (see MTEExecTrans).

Complete

Flag to request either all the table data at once or only a part of it:

TRUE Return all the table data. Function will query the trading system as many times

as needed to obtain all the data. In case of big table size (e.g. TRADES or

SETTLECODES) it may take a long time and even lead to disconnection on

timeout. If the content is not needed all at once, then in order to decrease

execution time, the FALSE value should be used.

© Moscow Exchange, 2022

20

FALSE Depending on the table type, the function returns only a part of the data or

nothing at all. Function will query the trading system one time, maximum. The

remaining data will considered as an update and should be read during the

update request cycle, initiated with MTEAddTable/MTERefresh.

Msg

An address of a variable (of the type “a pointer to a TMTEMsg/MTEMSG”), to store a pointer to

the buffer, containing the data of opened table. Buffer format is described in Appendix 2.

Returned value:

If successful, a descriptor of an open table is returned (value that is greater or equal to

MTE_OK). Received descriptor can be used when calling MTEAddTable function.

If error occurs, one of the MTE_xxxx error codes is returned. If MTE_TSMR error code is

returned, then "Data" field of the Msg structure contain error message with a length of [DataLen]

symbols.

REQUEST FOR UPDATE

Request for a table content update is performed in a batch mode, i.e. requests to update several open tables

are processed simultaneously. A set of tables to be refreshed is formed by calling MTEAddTable

function for every table. Then all the updates can be received with MTERefresh function. Execution of

other library functions (except MTEErrorMsg) is not allowed between those two functions.

MTEAddTable function adds a table to the update queue (changes that occurred since the last request).

C++

int32 WINAPI MTEAddTable(int32 Idx, int32 HTable, int32 Ref);

Pascal

function MTEAddTable(Idx, HTable, Ref: Integer): Integer; stdcall;

Arguments:

Idx

Connection descriptor received with MTEConnect.

HTable

Table descriptor received with MTEOpenTable.

Ref

Optional parameter to store arbitrary data. Usually used to match the data with a table in a buffer,

received with MTERefresh.

Returned value:

One of the MTE_xxxx error codes.

MTERefresh function performs the batch table updates (the request is formed with the MTEAddTable)

C++

int32 WINAPI MTERefresh(int32 Idx, MTEMSG **Msg);

Pascal

function MTERefresh(Idx: Integer; var Msg: PMTEMsg): Integer; stdcall;

Arguments:

Idx

Connection descriptor obtained by calling MTEConnect.

Msg

An address of a variable (of the type “a pointer to a TMTEMsg/MTEMSG”) to store the received

updates. The buffer format is described in appendix 3.

© Moscow Exchange, 2022

21

Returned value:

If successful then MTE_OK is returned and pointer to the update is saved into Msg argument

If error occurs, one of the MTE_xxxx error codes is returned. If MTE_TSMR error code is

returned, then the Data field of the Msg structure will contain the error message and have the

DataLen length of string.

CLOSING THE TABLE

Upon the end of work with a table it should be closed with MTECloseTable. The table descriptor

cannot be used after this function execution.

C++

int32 WINAPI MTECloseTable(int32 Idx, int32 HTable);

Pascal

function MTECloseTable(Idx, HTable: Integer): Integer; stdcall;

Arguments:

Idx

Connection descriptor received with MTEConnect.

HTable

A descriptor of the closing table, received with MTEOpenTable.

Returned value:

One of MTE_xxxx error codes.

EXAMPLE

Let the structure of input fields (received with MTEStructure) of SECURITIES and TRADES tables,

is as follows:

SECURITIES // Table name (Securities)

 Market: ftChar(4) // Market code

 Board: ftChar(4) // Trading board (mode) code

TRADES // “TRADES” table has no input fields

The following code shows how to work with tables. Tables are opened, their content is periodically

updated and then the tables are closed.

С++

int32 Idx; // Initiated by MTEConnect

MTEMsg *Msg;

char *Data;

int32 HSecurs, Htrades;

...

HSecurs = MTEOpenTable(Idx, “SECURITIES”, “CETS “, 1 /*True*/,

&Msg);

Data = (char *)(Msg + 1);

...

// Processing the received data

...

HTrades = MTEOpenTable(Idx, “TRADES”, “”, 0/*False*/, Msg);

Data = (char *)(Msg + 1);

...

// Processing the received data

...

© Moscow Exchange, 2022

22

do

{

 MTEAddTable(Idx, HSecurs, 0);

 MTEAddTable(Idx, HTrades, 1);

 MTERefresh(Idx, &Msg);

 Data = (char *)(Msg + 1);

 ...

 // Processing the updates

 ...

}while(!Terminated);

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

Pascal

Idx: Integer; // Initiated by MTEConnect

Msg: PMTEMsg;

HSecurs, HTrades: Integer;

Data: PAnsiChar;

...

HSecurs := MTEOpenTable(Idx, 'SECURITIES', 'CETS ', True,

Msg);

...

// Processing the received data

...

HTrades := MTEOpenTable(Idx, 'TRADES', '', False, Msg);

...

// Processing the received data

...

repeat

 MTEAddTable(Idx, HSecurs, 0);

 MTEAddTable(Idx, HTrades, 1);

 MTERefresh(Idx, Msg);

 Data := @Msg.Data;

 ...

 // Processing the updates

 ...

until Terminated;

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

NOTES ON WORKING WITH TABLES

Note 1. Follow these steps to avoid disconnections on timeout: 1. do not to set too small (less than 60

seconds) values for the DisconnectIfIdleFor parameter in ASTS Bridge configuration file; 2. maintain

active connection (heartbeat) by regular (approximately every 30 seconds) requests – for example, to

update TESYSTIME table. The USER_HEARTBEAT transaction can be used to monitor the connection

status.

Note 2. Most of the tables can be opened and closed anytime and as many times as needed during the

connection session with a server. Any number of table copies can be opened. However, some of the tables

can be opened only once during the session. These tables are: ORDERS, TRADES, NEGDEALS,

ALL_TRADES, POSITIONS, HOLDINGS, RM_INDICATIVE. If such table is closed and then opened

again, then initial content of the table will not be received again – only content updates will come.

Consequently, it is recommended to open such tables only once during the connection session and close

them only at the end of the session.

© Moscow Exchange, 2022

23

Note 3. For tables having the "tfClearOnUpdate – Clear on update" flag (except for the

EXT_ORDERBOOK table) the following updates processing order is defined: when a table is to be

cleared, then the RowsNumber is set to 1, i.e. only a single string with DataLength=0 is returned (see

Appendix 2).

There are two types of requests for orderbook (quotations) for the EXT_ORDERBOOK table:

1. To get information on one security, the request has to have non-empty values of “Board” and

“Security” fields;

2. To get orderbook (quotations) for all available securities with one request, fields “Board” and

“Security” have to be filled-in with spaces.

For the first type, when the orderbook table has to be cleared as the result of request, a table with a single

row is received that contains the following values: NumberOfFields=2 and DataLength=(length of

“Board” field + length of “Security” field). This string contains only the “Board” and “Security” fields.

For the second type, the reply on request can contain several such strings (which contain only the values

of “Board” and “Security” fields) – for given financial instruments this will mean the deletion of

orderbook (quotation) values.

Note that during the first request for all securities (i.e. at opening time), strings with initial zero values of

orderbook can be received. This is explained by the Trading system data transfer mechanism: the status of

these instruments has changed, so the Trading system only sends updates of the orderbook fields, which

are not reflected in clients’ systems. That is why all the updated orderbooks are transmitted even if they

are empty. The consequent requests will return data only on the orderbooks that have changed.

Also note that the test TEClient.exe application only shows instruments with changes since the last request

when opening the orderbook for the whole market, i.e. only those of the instruments that have updates in

the orderbook. Information on instruments with no orderbook changes will not be shown.

Note 4. The maximum refresh interval is governed by a document "Requirements for external systems and

their interfacing with ASTS Trading system". To avoid any delays at peak times, it’s possible to use the

adaptive refresh model: if the received data buffer is greater than 30 Kbytes, then ask for another update

immediately. If the buffer is less than 30 Kbytes then send the next request with standard interval (in 1

second, for example).

Note 5. When processing the data buffer with table rows all the records with matching values in key fields

should be merged into one table row. In certain cases, for example when opening the SECURITIES table,

even a single buffer may include several records for one row. Besides that, as will be explained in the

appendices below, one record in a buffer may either represent a whole table row (including static values)

or changes only. It is recommended to always implement the scenario when a partial set of fields may be

received for any table.

MEMORY USE OPTIMIZATION

All the functions of MTESRL library that return pointers to data buffer (pointer to the

PMTEMsg/MTEMSG structure; for example, MTEStructure, MTERefresh) use the same memory

region as the reception buffer (this is for one connection; with multiple connections multiple memory

areas are used). Let’s call these functions “informational functions”.

If informational function call returns data buffer that is larger than allocated, then the reallocation of a

larger block of memory will occur. Thus the maximum size of allocated memory equals to the largest

block of data received. All the allocated memory is released when connection is closed with

MTEDisconnect.

It is also possible to free the memory allocated for the buffer at any time, without closing the connection.

MTEFreeBuffer function is used for this purpose. This function should be called only after all the

received data has been processed. It should be kept in mind that before the next call of any of the

informational functions, memory should be allocated again. Frequent use of MTEFreeBuffer can

negatively influence the performance.

© Moscow Exchange, 2022

24

C++

int32 WINAPI MTEFreeBuffer(int32_t conno);

Pascal

function MTEFreeBuffer(Idx: Integer): Integer; stdcall;

Arguments:

Idx

A descriptor of connection received with MTEConnect to free the memory for.

Returned value:

One of the MTE_xxxx error codes.

This is the legacy function that is kept for compatibility with old client software.

RECOVERY AFTER FAILURES AT ASTS Bridge SERVER

During operation, external system or ASTS Bridge sometimes needs to be restarted in case of a critical

error. In that case, it is necessary to restore the system as soon as possible. In such situations, it is

recommended to use the following technology: external system makes a backup of loaded tables and state

of internal structures in files with a certain periodicity; in case of failure, data from the saved files is used

to restore last saved state of the external system.

MTESRL library allows to initiate the data transfer from ASTS Bridge Server, not only from the

beginning of a trading session, but from a certain point as well. To do so, the snapshot of opened tables

status should be made beforehand. Afterwards (if, for example, the connection to ASTS Bridge Server has

been lost) it will be possible to recover the status of open tables and continue getting data.

BACKING UP BRIDGE INTERNAL STRUCTURE

Backing up the state of the Bridge internal structures is performed after requesting and processing tables'

updates. This operation can be performed after each request for changes or after certain number of them.

As a rule, along with saving of bridge internal structures, the current state of all tables of the external

system is backed up. This ensures complete preservation of the current state of the whole system,

consisting of an external system and ASTS Bridge. A detailed scenario of operation in this case is shown

below:

To obtain a current state of tables opened on the server, use MTEGetSnapshot function.

C++

int32 WINAPI MTEGetSnapshot(int32 Idx, char ** Snapshot, int *Len);

Pascal

function MTEGetSnapshot(Idx: Integer; var Snapshot: LPSTR;

 var Len: Integer): Integer; stdcall;

Arguments:

Idx

Descriptor of connection, for which, the snapshot of opened tables should be received.

Snapshot

Address of the variable where pointer to the snapshot will be placed in case of success.

Len

Address of the variable, where the snapshot (i.e. buffer at which the Snapshot points) length will

be placed in case of success.

Returned value:

In case of success the function returns MTE_OK.

If error occurs, one of the error MTE_xxxx codes is returned. If MTE_TSMR error code is

returned, then the Snapshot will point to the error message and the Len will contain the length of

this message.

© Moscow Exchange, 2022

25

The snapshot of tables, loaded on the server side, can be considered just as a buffer with some binary data.

Its content does not have any meaning for the client.

The following code assumes that external system has connected to ASTS Bridge, received a data structure,

opened tables and moved to the cycle of getting tables updates:

С++

int32 Idx; // Initiated by MTEConnect

MTEMsg *Msg;

char *DataPtr;

int32 *TablesIdx; // array of indexes received with MTEOpenTable

int32 i,NumTables;// number of the updated tables

char *SnapshotBuf;// pointer to the buffer for the emergency

int32 SnapshotLen;// length of the buffer for the emergency saving

...

do

{

 for(i = 0; i < NumTables; i++)

 MTEAddTable(Idx, TablesIdx[i], i);

 MTERefresh(Idx, &Msg);

 DataPtr = (char *)(Msg + 1);

 ...

 // Processing the updates

 ...

 // Receive of the buffer for the Bridge internal structure

 MTEGetSnapshot(Idx, &SnapshotBuf, &SnapshotLen);

 // saving the buffer to the file

 ...

 // saving the status

 ...

}while(!Terminated);

Pascal

Idx: Integer; // Initiated by MTEConnect

Msg: PMTEMsg;

DataPtr: PChar;

TablesIdx: array of Integer; // of indexes received with

MTEOpenTable

i, NumTables: Integer; // number of the updated tables

SnapshotBuf: PChar; // pointer to the buffer for the

emergency

SnapshotLen: Integer; // length of the buffer for the emergency

saving

...

repeat

 for i := 0 to NumTables – 1 do

 MTEAddTable(Idx, TablesIdx[i], i);

 MTERefresh(Idx, Msg);

 DataPtr = @Msg.Data;

 ...

 // Processing the updates

 ...

 // Receive of the buffer for the Bridge internal structure

 MTEGetSnapshot(Idx, SnapshotBuf, SnapshotLen);

 // saving the buffer to the file

 ...

 // saving the status

© Moscow Exchange, 2022

26

 ...

until Terminated;

BRIDGE INTERNAL STRUCTURE RECOVERY

To get the list of opened tables, contained in a given snapshot, use MTEGetTablesFromSnapshot

function. This function can be called both before and after MTESetSnapshot.

C++

int32 WINAPI MTEGetTablesFromSnapshot(int32 Idx, char * Snapshot,

 int Len, MTESnapTable **SnapTables);

Pascal

function MTEGetTablesFromSnapshot(Idx: Integer; Snapshot: LPSTR;

 Len: Integer, var SnapTables: PMTESnapTables): Integer; stdcall;

Arguments:

Idx

Connection descriptor, obtained by MTEConnect function.

Snapshot

A pointer to a buffer, where the snapshot, taken by MTEGetSnapshot, is stored.

Len

Buffer length.

SnapTables

An address of a variable containing a pointer to MTESnapTable structure, where, in case of

success, a pointer to a buffer of opened tables will be placed. A memory for this buffer is

allocated by a library. In case of repeated calls to this function, the same buffer is used, so, result

should be saved by external system. The buffer has following format:

С++

typedef struct SnapTable {

 int32 Htable; // Descriptor of the opened table

 char* TableName // A poiner to an ASCIIZ-string,

containing table name.

 char* Params; // A pointer to an ASCIIZ-string,

containing the parameters, used when opening the table.

} MteSnapTable;

Pascal

TMTESnapTable = record

 HTable: Integer; // A table descriptor

 TableName: PAnsiChar; // char, Zero-byte terminated, Table

Name

 Params: PAnsiChar; // char, Zero-byte terminated,

Parameters provided on open table

end;

PMTESnapTables = ^TMTESnapTables;

TMTESnapTables = array [0..999999] of TMTESnapTable;

Returned value:

In case of negative value, return code is interpreted as MTE_xxxx error code.

In case of success, function returns non-negative value, equal to the number of opened tables, and

a pointer to a formed array of tables structures MTESnapTable through SnapTables
parameter.

Internal structures recovery is performed when restarting Bridge or external system after failures to restore

the system to the moment of last snapshot. This operation should be performed only within the current

© Moscow Exchange, 2022

27

trading session (see. MTEGetSnapshot). As a result, all opened tables and their descriptors will be

restored. So, previously used descriptors can be used again right after recovery. MTESetSnapshot

function can be used to restore Bridge last saved state.

C++

int32 WINAPI MTESetSnapshot(int32 Idx, char * Snapshot, int Len,

 char *ErrorMsg);

Pascal

function MTESetSnapshot(Idx: Integer; Snapshot: LPSTR; Len: Integer;

 ErrorMsg: LPSTR): Integer; stdcall;

Arguments:

Idx

A descriptor of connection, for which, the last state is restored.

Snapshot

A pointer to the buffer, which stores previously taken “snapshot”.

Len

The length of the buffer, pointed by a snapshot.

ErrorMsg

A pointer to at least 256 bytes buffer, to store a text string containing the result of restoring.

Returned value:

If function was successfully processed by the trading system, the following will be returned:

MTE_OK – restoring complete;

MTE_TSMR - trading system is unable to restore the state.

A text string containing result, returned by trading system, will be placed to ErrorMsg argument.

If error occurs, one of the MTE_xxxx error codes is returned. ErrorMsg field value is not defined.

The following code assumes that external system has backed up own and Bridge’s state before

the failure. Complete restart of the system, including Bridge server, is performed (acts similar

when restarting only external system or just ASTS Bridge server). System has connected to

Bridge server and obtained data structure description:

С++

int32 Idx; // Initialized MTEConnect call

MTEMsg *Msg;

char *DataPtr;

int32 *TablesIdx; // array of indexes of opened tables

int32 i, NumTables; // a number of updated tables

char *SnapshotBuf; // a pointer to a data buffer that will

be used when restoring the state of Bridge server

int32 SnapshotLen; // buffer length

...

// Recovery of the external system from the stored data

// At the same time NumTables values and index array of open tables

...

// Loading of the saved buffer from the file,

// which was backed up after last MTEGetSnapshot call,

// (initialization and loading SnapshotBuf buffer)

...

//Restoring the internal structures last state

MTESetSnapshot(Idx, SnapshotBuf, SnapshotLen);

//start of the normal operation cycle of the external system

do

{

 for(i = 0; i < NumTables; i++)

 MTEAddTable(Idx, TablesIdx[i], i);

 MTERefresh(Idx, &Msg);

© Moscow Exchange, 2022

28

 DataPtr = (char *)(Msg + 1);

 ...

 // Processing the updates

 ...

}while(!Terminated);

Pascal

Idx: Integer; // Initialized MTEConnect call

Msg: PMTEMsg;

DataPtr: PChar;

TablesIdx: array of Integer; // array of indexes of opened tables

i, NumTables: Integer; // a number of updated tables

SnapshotBuf: PChar; // a pointer to a data buffer that will

be used when restoring the state of Bridge server

SnapshotLen: Int32; // buffer length

...

// Recovery of the external system from the stored data

// At the same time NumTables values and index array of open tables

...

// Loading of the saved buffer from the file,

// which was backed up after last MTEGetSnapshot call,

// (initialization and loading SnapshotBuf buffer)

...

// Restoring the internal structures last state

MTESetSnapshot(Idx, SnapshotBuf, SnapshotLen);

// start of the normal operation cycle of the external system

repeat

 for i := 0 to NumTables – 1 do

 MTEAddTable(Idx, TablesIdx[i], i);

 MTERefresh(Idx, Msg);

 DataPtr = @Msg.Data;

 ...

 // Processing the updates

 ...

until Terminated;

EXAMPLE OF RECOVERY AFTER THE FAILURE

Suppose that we have:

1. Established connection with ASTS Bridge Server with MTEConnect.

2. Opened several tables by calling MTEOpenTable and saved their descriptors in variables named

hTable1, hTable2, ..., hTableN.

3. Executed some transactions, requested updates of informational tables, periodically saved the

snapshots with MTEGetSnapshot.

4. Now suppose that at certain point the connection with ASTS Bridge Server has been lost. The

recovery procedure will be as follows.

5. Reconnect to the Bridge Server with MTEConnect;

6. Call MTESetSnapshot with the last saved snapshot

7. Now we can use previously defined table handles hTable1, hTable2, ..., hTableN. There is no need to

call MTEOpenTable again. All the following MTERefresh calls will return tables updates,

accumulated after saving Snapshot.

If the data, received before the connection loss, have been saved, Get / Set Snapshot mechanism can

significantly reduce the time of reception of all tables' updates after the reconnection.

© Moscow Exchange, 2022

29

SELECTIVE OPEN OF TABLES FROM THE SNAPSHOT

There is also an alternative way to restore the system after failure. Instead of saving and loading complete

state of all tables, it’s possible to restore only certain large tables (e.g. “ORDERS”, “TRADES”), and open

other tables in the usual way – with MTEOpenTable function. This way eliminates the need for storage

a list of open tables along with their descriptors. It’s enough to retain only the snapshot, and then open the

tables, using the MTEOpenTableAtSnapshot function. The data from tables, opened this way, will

not come from scratch but from the moment when an appropriate snapshot was taken. There is no need to

call MTESetSnapshot in that scenario.

C++

int32 WINAPI MTEOpenTableAtSnapshot (int32 Idx, char* TableName,

 char* Params, char* Snapshot, int SnapshotLen, MTEMsg **Msg);

Pascal

function MTEOpenTableAtSnapshot(Idx: Integer;

 TableName, Params, Snapshot: PAnsiChar;

 SnapshotLen: Integer; var Msg: PMTEMsg): Integer; stdcall;

Arguments:

Idx

A descriptor of connection, obtained by calling MTEConnect.

TableName

A pointer to ASCIIZ string containing a table name. Possible names can be obtained by calling

MTEStructure, MTEStructure2 or MTEStructureEx functions.

Params

A pointer to ASCIIZ string containing parameters of the table. The length of the string and its

value must match the description of table input fields, received with MTEStructure or

MTEStructure2 or MTEStructureEx. All fields have to be submitted as a text with trading

system formatting.

Snapshot

A pointer to a buffer containing a snapshot. The requested table with the specified parameters

should be included in this snapshot, otherwise the function returns an MTE_TSMR error. If null

pointer is passed in this parameter, the function behaves like a call to MTEOpenTable with

Complete = FALSE option.

SnapshotLen

A length of the buffer containing the snapshot.

Msg

Address of variable (of type "pointer to TMTEMsg/MTEMSG"), which, if successful, will store a

pointer to a buffer containing a portion of updates for an open table. The buffer format is

described in Appendix 2.

Returned value:

In case of success, function returns descriptor of the opened table (value greater or equal

MTE_OK). Obtained descriptor is used when calling MTEAddTable function.

If error occurs, one of the MTE_xxxx error codes is returned. If the returned error code is

MTE_TSMR, the Data field of Msg structure contains error message of DataLen characters

length.

The following code shows selective opening of «Orders» table from the snapshot:

C++

int32 Idx; // Initialized by calling MTEConnect

MTEMsg *Msg;

char *DataPtr;

© Moscow Exchange, 2022

30

char *Snapshot;

int32 Len;

int32 HSecurs, HTrades;

...

HSecurs = MTEOpenTable(Idx, “SECURITIES”, “EQBR “, 1 /*True*/,

 &Msg);

// Processing the received data

...

HTrades = MTEOpenTable(Idx, “TRADES”, “”, 0 /*False*/, &Msg);

// Processing the received data

...

// Fail occurred!. Saving the snapshot and closing the tables

MTEGetSnapshot(Idx, &Snapshot, &Len);

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

...

// Recovery starts. Loading the snapshot and opening the tables

HSecurs = MTEOpenTable(Idx, “SECURITIES”, “EQBR “,

 1 /*True*/, &Msg);

// SECURITIES table is opened from scratch, processing the data

...

HTrades = MTEOpenTableAtSnapshot(Idx, “TRADES”, “”, Snapshot,

 Len, &Msg);

// TRADES table is opened from the snapshot, processing the data

...

do {

 MTEAddTable(Idx, HSecurs, 0);

 MTEAddTable(Idx, HTrades, 1);

 MTERefresh(Idx, &Msg);

 DataPtr = (char *)(Msg + 1);

 // Processing the updates

 ...

} while (!Terminated);

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

Pascal

Idx: Integer; // Initialized by calling MTEConnect

Msg: PMTEMsg;

HSecurs, HTrades: Integer;

Snapshot: PAnsiChar;

Len: Integer;

Data: PAnsiChar;

...

HSecurs := MTEOpenTable(Idx, 'SECURITIES', 'EQBR ', True,Msg);

// Processing the received data

...

HTrades := MTEOpenTable(Idx, 'TRADES', '', False, Msg);

// Processing the received data

...

// Fail occurs here. Saving the snapshot and closing the tables

MTEGetSnapshot(Idx, Snapshot, Len);

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

...

// Recovery starts. Loading the snapshots and opening the tables

HSecurs := MTEOpenTable(Idx, 'SECURITIES', 'EQBR ', True,Msg);

// SECURITIES table is opened from scratch, processing the data

...

© Moscow Exchange, 2022

31

HTrades := MTEOpenTableAtSnapshot(Idx, 'TRADES', '', Snapshot,

Len, Msg);

// TRADES table is opened from the snapshot, processing the data

...

repeat

 MTEAddTable(Idx, HSecurs, 0);

 MTEAddTable(Idx, HTrades, 1);

 MTERefresh(Idx, Msg);

 Data := @Msg.Data;

 // Processing the updates

 ...

until Terminated;

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

CLOSING CONNECTION SESSION

Upon the end of work on the market, the client has to execute the MTEDisconnect function.

C++

int32 WINAPI MTEDisconnect(int32 Idx);

Pascal

function MTEDisconnect(Idx: Integer): Integer; stdcall;

Arguments:

Idx

Connection handle received with MTEConnect, that has to be closed.

Returned value:

One of the MTE_xxxx error codes.

Example:

Close the connection with Idx descriptor.

С++

int32 Idx; // Initiated by MTEConnect

int32 Err;

...

Err = MTEDisconnect(Idx);

if (Err != MTE_OK)

 fprintf(stderr, “Error: %s\n”, MTEErrorMsg(Err));

else

 fprintf(stdout,”Session has ended\n”);

Pascal

Idx: Integer; // Initiated by MTEConnect

Err: Integer;

...

Err := MTEDisconnect(Idx);

if Err <> MTE_OK then Writeln(MTEErrorMsg(Err)

 else Writeln('Session has ended');

ERROR MESSAGES

All the library functions support MTE_xxxx error codes. MTEErrorMsg or MTEErrorMsgEx functions

can be used to get the error code text description

© Moscow Exchange, 2022

32

C++

char * WINAPI MTEErrorMsg(int32 ErrorCode);

char * WINAPI MTEErrorMsgEx(int32 ErrorCode, char *Language);

Pascal

function MTEErrorMsg(ErrCode: Integer): LPSTR; stdcall;

function MTEErrorMsgEx(ErrCode: Integer; Language: PAnsiChar): LPSTR;

 stdcall;

Arguments:

ErrorCode

One of the MTE_xxxx error codes.

Language

Appropriate language to use in error messages. Possible values are: “English”, “Russian”,

“Ukrainian”. If invalid language is specified, English will be used instead. MTEErrorMsg

function always returns messages in English.

Returned value:

Pointer to an ASCIIZ-string that contains text description of an error.

ERROR CODES

ID Code Description

MTE_OK 0 No errors.

MTE_CONFIG -1 Configuration error: trying to connect to the wrong server, no

services specified on a server, wrong parameter values in

configuration file.

MTE_SRVUNAVAIL -2 Server is not available. ASTS Bridge Server is not running,

Trading system is not available or connection is disrupted.

MTE_LOGERROR -3 Could not create log file when calling MTEConnect.

MTE_INVALIDCONNECT -4 Invalid connection handle was given. MTEConnect has not

been called or MTEDisconnect function has already been

called.

MTE_NOTCONNECTED -5 Connection with a given descriptor has been lost due to an

error (and not as the result of MTEDisconnect function).

Error on ASTS Bridge Server, Trading System has been shut

down or connection is disrupted.

MTE_WRITE -6 Error writing to port. Error on ASTS Bridge Server or port

connection is disrupted.

MTE_READ -7 Error reading from port. Error on ASTS Bridge Server or port

connection is disrupted.

MTE_TSMR -8 Error related to the protocol of interaction with the Trading

system, or trading system is not available.

MTE_NOMEMORY -9 Not enough memory to perform the operation.

MTE_ZLIB -10 Error in compression/decompression of transmitted data.

MTE_PKTINPROGRESS -11 MTEAddTable function has been called without the

following call of MTERefresh. Other functions cannot be

called while the request package is being prepared.

MTE_PKTNOTSTARTED -12 MTERefresh function has been called without the prior call

of MTEAddTable. The update request package has to be

prepared first.

MTE_FATALERROR -13 An unexpected fatal error has occurred.

MTE_INVALIDHANDLE -14 Invalid table descriptor. Either the descriptor hasn’t been

received with MTEOpenTable or a table has already been

closed with MTECloseTable.

MTE_DSROFF -15 Serial port connection has been disrupted (no DSR signal).

Probably the serial cable is damaged or the serial port is

© Moscow Exchange, 2022

33

closed at one of the connecting sides. Available in the old

ASTS Bridge versions.

MTE_UNKNOWN -16 Unexpected error occurred when executing a function.

MTE_BADPTR -17 Invalid pointer argument has been passed to a one of

MTExxxx() function.

MTE_TRANSREJECTED -18 Trading system has processed the request and returned an

error code. Transaction has been rejected.

MTE_TEUNAVAIL -19 Trading system is temporary unavailable. The server attempts

to recover the connection with the Trading system, or waits

for a trading session.

MTE_NOTLOGGEDIN -20 Client attempts to execute a request after the server has

established a new connection session with the trading session.

Client re-connection required.

MTE_WRONGVERSION -21 Current version of client library is not supported by server.

MTE_LOGON -30 Wrong login data (USERID, PASSWORD, etc.) provided.

MTE_TOOSLOWCONNECT -31 Too slow connection channel does not allow to finalize

connection/reconnection procedure correctly.

MTE_CRYPTO_ERROR -32 Encryption/decryption error when creating/verifying the

digital signature.

MTE_THREAD_ERROR -33 The client is trying to use one connection in two threads. For

example, trying to call an MTExxxx() function while the

previously executed MTExxxx() function has not finished its

operation yet.

MTE_NOTIMPLEMENTED -34 The requested function is not supported by this version of

client library.

MTE_ABANDONED -35 Returned by MTEDisconnect function (called in another

thread), in case of working thread has been stopped by calling

TerminateThread.

MTE_BADINTERFACE -36 Returned by MTEСonnect/MTEConnectEx function if

error occurs when loading the interface from the Trading

System (e.g. the ASTSBridge version is outdated andt doesn’t

support current interface format).

© Moscow Exchange, 2022

34

APPENDIX 1. BUFFER FORMAT OF THE MTESTRUCTURE,
MTESTRUCTURE2 AND MTESTRUCTUREEX FUNCTIONS

The Data field of the TMTEMsg/MTEMSG structure, pointer to which is returned by the MTEStructure

function, has the following format (for the description of basic types e.g. String, Integer, etc, see Appendix

4; in case of MTEStructure each String field is preceded with 4 bytes that indicate the length of the

following string). Fields and values, passed only in MTEStructure2 function (similar to

MTEStructureEx with Version=2 attribute) are marked with red:

 Field type

TInterface:

InterfaceName String

InterfaceTitle String

InterfaceDescription String // only MTEStructureEx with Version>=2

MsgSetNumber String // only MTEStructureEx with Version>=4

EnumeratedTypes TEnumTypes

Tables TTables

Transactions TTransactions

The description of information objects consists of three blocks: enumerated types, tables and transactions.

TEnumTypes:

NumberOfTypes Integer

Type1 TEnumType

Type2 TEnumType

...

TypeN TEnumType

TEnumType:

 Name String

Title String

Description String // only MTEStructureEx with Version>=2

Size Integer

Type TEnumKind

NumberOfConstants Integer

Constant1 TEnumConst

Constant2 TEnumConst

...

ContstantN TEnumConst

TEnumConst for MTEStructure:

 String string // formatted «Value=LongDescription»

TEnumConst for MTEStructureEx with Version>=2:

 Value string

 LongDescription string

ShortDescription string

TEnumKind: Integer

ekCheck = 0

ekGroup = 1

ekCombo = 2

Enumerated types are used to describe available values of table fields and transactions. A type description

looks similar to the following:
'TCurrency' // Name

'Currency' // Description

4 // Size

ekCombo // Preferred representation - "Type"

3 // Number of constants

'RUR =Roubles' // Constant 1

'USD =U.S. Dollars' // Constant 2

© Moscow Exchange, 2022

35

'EUR =Euro' // Constant 3

"Size" field (=4) indicates the size of available values for the fields of this type.

"Type" field (=ekCombo) assigns the preferred way of field representation that is used during the creation

of a form for parameters entry. For example, the ekCombo field type can be presented as a list of values.

Available values are illustrated below:

For MTEStructure constants consist of two parts – acceptable value (always with the length of

"Length") and description of this value. Two parts are separated by the equals sign (=).

For MTEStructure2 and MTEStructureEx with Version>=2 constants value and their

description are passed in separate fields.

TTables:

NumberOfTables Integer

Table1 TTable

Table2 TTable

...

TableN TTable

TTable:

Name String

Title String

Description String // only MTEStructureEx with Version>=2

SystemIndex Integer // only MTEStructureEx with Version>=2

Attributes TTableFlags

InputFields TFields

OutputFields TFields

TTableFlags: Integer

tfUpdateable = 1

tfClearOnUpdate = 2

tfOrderbook = 4 // only MTEStructureEx with Version>=2

The list of table input fields is used when forming a parameter string for MTEOpenTable function.

The list of output parameters allows to parse buffers, returned by MTEOpenTable and MTERefresh

functions.

“SystemIndex” field contains a number of subsystem of ASTS Trading system, which processes current

request. Updates packet, formed by MTEAddTable calls, may contain only queries with the same

"SystemIndex". Currently, for all markets, except for Derivatives market, the index is 0, and all the tables

can be updated with a single MTERefresh call. There are two subsystems in the derivatives market:

Trading system and Risk Management system – so all requests for update should be divided into two

packets according to the "SystemIndex".

Table attributes can be combined (i.e. the value will be equal to 3) and have the following values:

tfUpdateable - the table is updateable. Functions MTEAddTable/MTERefresh can be used to

get updates;

tfClearOnUpdate - the old table contents should be cleared before each update with

MTEAddTable/MTERefresh functions.

tfClearOrderbook – the table has a orderbook (quotebook) format and should be appropriately processed

(see. Working with tables -> Notes).

© Moscow Exchange, 2022

36

TFields:

 NumberOfFields Integer

 Field1 TField

 Field2 TField

 ...

 FieldN TField

TField:

Name String

Title String

Description String // only MTEStructureEx with Version>=2

Size Integer

Type TFieldType

NumbDecimalPlaces Integer // only MTEStructureEx with Version>=2

Attributes TFieldFlags

EnumeratedType String

DefaultValue String // for input fields only

TFieldType: Integer

ftChar = 0

ftInteger = 1

ftFixed = 2

ftFloat = 3

ftDate = 4

ftTime = 5

ftFloatPoint = 6 // only MTEStructureEx with Version>=3

ftMemo = 7 // only MTEStructureEx with Version>=5

TFieldFlags: Integer

ffKey = 0x01

ffSecCode = 0x02

ffNotNull = 0x04

ffVarBlock = 0x08 // only MTEStructureEx with Version>=2

 Field attributes (TFieldFlags) can be combined and have the following values:

ffKey Key field. Table rows with the same key field values should be merged in one string.

ffSecCode This field contains security ID. It’s recommended to consider this flag when automating

the procedure of counting decimal places in fields of type ftFloat.

ffNotNull Cannot be null.

ffVarBlock This field may be repeated several times.

Note. “DefaultValue” field is available only as input field.

“Size” defines the lengths of a field in characters.

"NumbDecimalPlaces" specifies the number of decimal places for fields of type ftFixed.

“EnumeratedType” can contain either name of an enumerated type to which a field refers or an empty

string.

“Default Value” can be used when creating a form for parameters entry.

All fields are represented in trading system text format (see MTEExecTrans).

TTransactions:
NuOfTransactions Integer

Transaction1 TTransaction

Transaction2 TTransaction

...

TransactionN TTransaction

TTransaction:

Name String

Title String

Description String // only MTEStructureEx with Version>=2

SystemIndex Integer // only MTEStructureEx with Version>=2

© Moscow Exchange, 2022

37

InputFields TFields

The list of transaction input fields is used when forming a parameter string for the MTEExecTrans

function.

APPENDIX 2. BUFFER FORMAT OF THE MTEOPENTABLE FUNCTION

The Data field of the TMTEMsg/MTEMSG structure (pointer returned by the MTEOpenTable function)

contains rows of a requested table and has the following format (for the description of the basic types e.g.

String, Integer, etc, see Appendix 4):

 field type

TMTETable:

Ref Integer

NuOfRows Integer

Row1 TMTERow

Row2 TMTERow

...

RowN TMTERow

"Ref" field is used when requesting updates for several tables simultaneously with

MTEAddTable/MTERefresh functions. It contains the value of a third parameter passed to

MTEAddTable(Idx, Htable, Ref) function. By value of this field, it's possible to determine which table

(HTable descriptor) the received TMTETable structure corresponds to. The “Ref” field value is set to “0”

in the buffer returned by the MTEOpenTable.

TMTERow:

NumberOfFields Byte

DataLength Integer

FieldNumber Byte[NumberOfFields]

FieldData Byte[DataLength]

Table rows have variable length and can contain different number of fields.

“NumberOfFields” field contains the number of table fields, present in a given string. If the value is 0 then

strings contains all the fields of the table (see. MTEStructure).

“DataLength” field contains the total length of table fields, present in a given string.

“FieldsNumber” field has a variable length. Its size equals to the value of “NumberOfFields” field. This

field contains numbers of fields (one byte per number), present in a given string. The number of field

corresponds to the number of an output field in the description of information objects (see

MTEStructure). If “NumberOfFields” is 0 then “FieldsNumber” is not available and all the fields'

numbers should be taken sequentially: 0, 1, 2, 3 … N.

“FieldsData” field (size equals to the size of “DataLength”, in bytes) contains set of table fields values.

The number of fields is defined by “NumberOfFields” and their total length – by “DataLength”. Length

and type of each field are defined in the description of an information object (see MTEStructure). All

fields are represented in trading system text format (see appendix 5).

Example:

Let the description of information objects, received with MTEStructure, defines the “Trades” table

with the following input fields:

TRADES // "Trades"

 TradeNum: ftInteger(12) // Number of a trade

 TradeTime: ftChar(6) // Time of a trade

 BuySell: ftChar(1) // "B" - buy, "S" - sell

 SecBoard: ftChar(4) // board code

 SecCode: ftChar(12) // financial instrument code

 Price: ftFloat(9) // price

 Qty: ftInteger(10) // quantity of lots

© Moscow Exchange, 2022

38

The function is invoked:

MTEOpenTable(Idx, 'TRADES', '', True, Msg);

As the result, Msg.Data field contains the following data:

{

 0x00000000, // "Ref" field

 0x00000002, // Two rows received

 0x05, // First row has 5 fields

 0x0000002F, // Data length is 47 bytes

 #0#3#4#5#6, // Numbers of fields 0, 3, 4, 5, 6:

// these are "TradeNum","SecBoard","SecCode","Price","Qty" fields from

description

 '000000120567CETSUSD000000TOD0002579000000000037'

 // Fields values: 120567, "CETS", "USD000000TOD", 25.79, 37

 0x03, // Second row contains 3 fields

 0x16, // Data length is 22 bytes

 #1#3#4, // Numbers of fields 1, 3, 4:

// these are "TradeTime","SecBoard","SecCode" fields from description

 '102953CETSUSD000000TOM'

 // Fields values: "10:29:53", "CETS", "USD000000TOM"

}

APPENDIX 3. BUFFER FORMAT OF THE MTEREFRESH FUNCTION

The Data field of the TMTEMsg/MTEMSG structure (pointer returned by the MTEOpenRefresh

function) contains several tables from the trading system and has the following format (for the description

of the basic types e.g. String, Integer, etc, see Appendix 4):

 field type

TMTETables:

NuOfTables Integer

Table1 TMTETable

Table2 TMTETable

...

TableN TMTETable

So the buffer can contains several tables. The format of this buffer is described in appendix 2.

APPENDIX 4. BASIC TYPES

MTESRL library uses the following structures to represent basic types:

Byte

One byte.

Integer

Four bytes in a format of x86 CPU (the little-endian byte goes first).

String

Structure as follows:

StringLength: Integer

StringText: Byte[StringLength]

© Moscow Exchange, 2022

39

Byte[N]

Byte array of the length of N.

APPENDIX 5. FORMATTING OF A TABLE DATA RECEIVED FROM THE TRADING

SYSTEM

ftChar

String of characters right padded with blank spaces to correspond the required length.

ftInteger

Values of fields of ftInteger type (integer numbers) are transmitted in text format and left padded

with zeroes to correspond the required length.

ftFloat

 (corresponds to the “PRICE” type in text interface specs)

Values of fields of ftFloat type (real numbers) are transmitted in text format without a decimal

point. The number of digits after the decimal point in ftFloat type fields for a specific security is

defined by the “DECIMALS” field of “SECURITIES” table.

The ftFloat type fields must contain [DECIMALS] number of digits after the decimal point. For

example, the number 465.39 for a security with DECIMALS =4 must be represented as

“4653900”. The value of “46539” would have been processed by the trading system as 4.6539.

ftFixed

The ftFixed type fields are also passed as text strings without a decimal point. By default, fields

of this type have two digits after the decimal point. However, when using MTEStructure2 and

MTEStructureEx with Version>=2 (see Appendix 1), the exact number of decimal places is

passed.

ftDate

The ftDate type fields are strings with YYYYMMDD format.

ftTime

The ftTime type fields are strings with HHMMSS format.

ftFloatPoint

(corresponds to the “FLOAT” type in html interface specs)

Values of fields of FloatPoint type (real numbers) are transmitted in a text format with the

decimal point and should be supplemented to the required value with zeros on the left. This type

is available when obtaining information objects structure with MTEStructureEx function with

Version>=3 attribute (see. Appendix 1). In case of using MTEStructure and MTEStructure2 the

type is transmitted as a string (ftChar). Decimal point position is not strictly regulated. Decimal

point and, if needed, sign of the number (positive or negative), are considered at length

calculation. For example: ftFloatPoint(9): "001.45712", ftFloatPoint(16): "-0000012071000.5".

ftMemo

String of characters of arbitrary length. This type is available when obtaining information objects

structure with MTEStructureEx function with Version>=5 attribute (see. Appendix 1). In case of

using MTEStructure and MTEStructure2 the type is trimmed to the size specified and transmitted

as a fixed length string (ftChar). The structure containing:

• MemoLen – string length in text format and left padded with zeroes to correspond the

length specified;

• Memo – character sequence of the length MemoLen bytes

For example: ftMemo(6): "000015Hello, world!!!" stands for 15 byte length string

"Hello, world!!! ".

© Moscow Exchange, 2022

40

Note:

An empty value (NULL) can be specified in a field of any type; for this, a string of all blanks of

the required length is used.

