

ASTS Connectivity API

Программный интерфейс

подключения внешних систем

к торгово-клиринговой системе

ASTS Московской Биржи

(Библиотека MTESRL v. 4.4)

© ПАО Московская Биржа, 2022

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

2

СОДЕРЖАНИЕ

ВВЕДЕНИЕ .. 3

БИБЛИОТЕКА MTESRL ... 3

ТРЕБОВАНИЯ К ПРОГРАММНОМУ И АППАРАТНОМУ ОБЕСПЕЧЕНИЮ 3

СЦЕНАРИЙ РАБОТЫ С БИБЛИОТЕКОЙ... 4

РЕГИСТРАЦИЯ НА СЕРВЕРЕ .. 4

ПОДКЛЮЧЕНИЕ К ASTS Bridge ... 4

ВЫБОР СПИСКА РЕЖИМОВ ... 10

ПОЛУЧЕНИЕ СЛУЖЕБНОЙ И СЕРВИСНОЙ ИНФОРМАЦИИ 11

ПОЛУЧЕНИЕ ИНФОРМАЦИИ О ШЛЮЗЕ ... 11
ПОЛУЧЕНИЕ ИНФОРМАЦИИ О ВЕРСИИ КЛИЕНТСКОЙ БИБЛИОТЕКИ 12
ПОЛУЧЕНИЕ ИНФОРМАЦИИ О СОСТОЯНИИ СОЕДИНЕНИЯ 13

СБОР СТАТИСТИКИ ПО СОЕДИНЕНИЮ ... 13

ПОЛУЧЕНИЕ ОПИСАНИЯ ИНФОРМАЦИОННЫХ ОБЪЕКТОВ 14

РАБОТА С ИНФОРМАЦИОННЫМИ ОБЪЕКТАМИ 16

ВЫПОЛНЕНИЕ ТРАНЗАКЦИЙ ... 16

РАБОТА С ТАБЛИЦАМИ .. 21
Открытие таблицы ... 21

Запрос изменений .. 22

Закрытие таблицы .. 23

Пример работы с таблицами ... 23
Замечания по работе с таблицами ... 24

ОПТИМИЗАЦИЯ ИСПОЛЬЗОВАНИЯ ПАМЯТИ 25

ВОССТАНОВЛЕНИЕ ПОСЛЕ СБОЯ НА ASTS BRIDGE 26

СОХРАНЕНИЕ СОСТОЯНИЯ ВНУТРЕННИХ СТРУКТУР ШЛЮЗА 26
ВОССТАНОВЛЕНИЕ СОСТОЯНИЯ ВНУТРЕННИХ СТРУКТУР ШЛЮЗА...................... 28
АЛГОРИТМ ВОССТАНОВЛЕНИЯ ПОСЛЕ СБОЯ.. 31

ВЫБОРОЧНОЕ ОТКРЫТИЕ ТАБЛИЦ ИЗ СНЕПШОТА .. 31

ЗАВЕРШЕНИЕ СЕАНСА СВЯЗИ ... 34

СООБЩЕНИЯ ОБ ОШИБКАХ ... 34

КОДЫ ОШИБОК .. 35

ПРИЛОЖЕНИЕ 1. ФОРМАТ БУФЕРА ДЛЯ ФУНКЦИЙ MTESTRUCTURE,
MTESTRUCTURE2 И MTESTRUCTUREEX .. 37

ПРИЛОЖЕНИЕ 2. ФОРМАТ БУФЕРА ДЛЯ ФУНКЦИИ MTEOPENTABLE ... 40

ПРИЛОЖЕНИЕ 3. ФОРМАТ БУФЕРА ДЛЯ ФУНКЦИИ MTEREFRESH 41

ПРИЛОЖЕНИЕ 4. ЭЛЕМЕНТАРНЫЕ ТИПЫ .. 41

ПРИЛОЖЕНИЕ 5. ФОРМАТИРОВАНИЕ ТАБЛИЧНЫХ ДАННЫХ,
ВОЗВРАЩАЕМЫХ ТОРГОВОЙ СИСТЕМОЙ ... 42

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

3

ВВЕДЕНИЕ

Программный интерфейс позволяет подключать к Торгово-клиринговой системе ASTS

Московской Биржи брокерские системы, системы распространения биржевой информации,

бэкофисные приложения, торговые автоматы и другие клиентские приложения.

Архитектура системы приведена на следующей диаграмме:

В данном документе подробно рассматривается создание клиентов программного интерфейса.

Все необходимые для этого функции собраны в библиотеке MTESRL.

БИБЛИОТЕКА MTESRL

Библиотека служит для создания клиентов универсального программного интерфейса,

позволяющего подключать к торгово-клиринговым комплексам ASTS Московской Биржи внешние

системы. Библиотека обеспечивает двунаправленную связь с торговой/клиринговой системой и

содержит функции как для получения информации из торговой системы (сделки, котировки,

инструменты, персональная торговая и клиринговая информация и т.п.), так и для выполнения

транзакций (постановка/снятие заявок и т.п.). Библиотека позволяет работать со следующими

рынками Московской Биржи: фондовый, валютный рынок и рынок драгметаллов, денежный

(депозитно-кредитные операции).

ТРЕБОВАНИЯ К ПРОГРАММНОМУ И АППАРАТНОМУ ОБЕСПЕЧЕНИЮ

Библиотека MTESRL разработана для следующих ОС:

• Windows 10 или Windows Server 2016/2019, 32- или

64-битная (mtesrl[64].dll);

• ОС семейства Linux на платформе x86, 64-битная (libmtesrl.so).

Примечание: в Linux-версии библиотек используется соглашение о вызовах функций

cdecl.

Существует два варианта библиотеки MTESRL, различающиеся по типу подключения к ТС:

• подключение к торговой системе через шлюз ASTS Bridge по протоколу TCP/IP;

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

4

• подключение к торговой системе напрямую. Данный вариант библиотеки может

использоваться только при установке внешней системы в вычислительном центре биржи

на условиях co-location.

Для нормального функционирования библиотеки MTESRL предъявляются следующие

минимальные требования к аппаратному обеспечению компьютера:

• Процессор: Intel Core с частотой 1,4ГГц или выше. Рекомендуемый – с частотой от 3 ГГц

x4 ядра.

• ОЗУ – 4ГБ или более. Рекомендуется от 16 Гб.

• Жесткий диск с 10 Гбайт свободного пространства для ведения журналов работы.

• Наличие Ethernet сетевой карты.

СЦЕНАРИЙ РАБОТЫ С БИБЛИОТЕКОЙ

Типичный сценарий работы клиента с программным интерфейсом выглядит так:

1. Регистрация на сервере.

2. Получение описания информационных объектов (типов, таблиц и транзакций).

3. Работа с информационными объектами (таблицами и транзакциями).

4. Сохранение данных, необходимых для восстановления в случае сбоя внешней системы

или шлюза (snapshots или checkpoints) [опционально].

5. Завершение сеанса связи.

В подкаталоге Demo каталога установки системы находятся интерфейсные модули к библиотеке и

примеры на MS Visual C, Java, C#, Delphi.

РЕГИСТРАЦИЯ НА СЕРВЕРЕ

ПОДКЛЮЧЕНИЕ К ASTS Bridge

Для начала работы с интерфейсом необходимо подключиться к серверу ASTS Bridge. Для этого

служит функция MTEConnect. Ее следует вызывать до обращения ко всем последующим

функциям.

C++

int32 WINAPI MTEConnect(char *Params, char *ErrorMsg);

Pascal

function MTEConnect(Params, ErrorMsg: LPSTR): Integer; stdcall;

Аргументы:

Params

Параметры, используемые для установления соединения. Указатель на ASCIIZ-строку,

содержащую список параметров, разделенных символами возврата каретки и перевода

строки (0x0D, 0x0A) в следующем формате:

Parameter1=Value1

Parameter2=Value2

...

ParameterN=ValueN

Названия параметров и их допустимые значения зависят от способа соединения

конкретной библиотеки с торговой системой. Библиотека MTESRL использует следующие

параметры:

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

5

ПОДКЛЮЧЕНИЕ К ASTS BRIDGE

HOST список IP-адресов и портов шлюзового сервера ASTS Bridge,

разделенный запятыми, например:

“194.186.240.85:20006,194.186.240.73:20006”;

PREFERREDHOST адрес предпочтительного сервера доступа; если не указан,

подключение будет выполнено к наименее загруженному серверу

из списка HOST;

SERVER идентификатор сервера, например “EQ_TEST”;

USERID идентификатор пользователя в торговой/клиринговой системе;

PASSWORD пароль пользователя в торговой/клиринговой системе;

INTERFACE идентификатор интерфейса торговой системы, например,

“IFCBroker_26”;

BOARDS список режимов, с которыми будет работать пользователь,

например: “TQBR,TQOB,PSEQ” (необязательный параметр, если

не задан будут выбраны все доступные режимы);

COMPRESSION Степень сжатия передаваемых данных:

 “0” – не сжимать данные;

 “1” – использовать сжатие ZLIB;

 “2” – сжимать большие пакеты с помощью BZIP

По умолчанию используется уровень сжатия 1. Поддержка BZIP

может быть удалена в будущих версиях.

Настройка шифрования и ЭЦП «Валидата»

Signing - константа:

Validata

Signing.ProfileName - имя профиля системы криптографической защиты

информации «Валидата» (необязательный параметр, если не задан, то шифрование и ЭЦП

будут отключены). Поддерживается также старое имя этого параметра PROFILENAME;

Перед именем профиля должен быть обязательно указан префикс:

xpki: для использования квалифицированных сертификатов (ГОСТ) и

СКЗИ Валидата версии 5;

zpki: для использования квалифицированных сертификатов (ГОСТ) и

СКЗИ Валидата версии 6;

rpki: для использования неквалифицированных сертификатов (RSA).

Например, если в ПО «Справочник сертификатов» профиль называется

DefaultGost, то необходимо задать параметр Signing.ProfileName=zpki:DefaultGost

Signing.InitFlags - комбинация флагов инициализации «Валидаты»

(необязательный параметр):

1 - не выполнять автоматическое обновление СОС (списка отозванных

сертификатов) при инициализации;

4 - не использовать сетевые справочники;

Signing.Type, Signing.BasePath и Signing.LdapPath - альтернативный

способ инициализации «Валидаты» (не через имя профиля). Может оказаться полезным,

если «Валидата» устанавливалась под другим пользователем Windows (например,

клиентская часть шлюза запускается как сервис). В этом случае в реестре текущего

пользователя не будет записей об именах профилей и воспользоваться параметром

ProfileName не удастся. Значения этих параметров необходимо уточнить в реестре того

пользователя, под которым устанавливалась «Валидата», а именно:

Signing.Type - используемый крипто-провайдер:

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

6

Validata CSP - крипто-ядро Validata CSP (zpki1.dll/xpki1.dll);

Microsoft CSP - крипто-ядро Microsoft для нерезидентов (rpki1.dll).

Signing.BasePath - взять только путь к файлу из ключа реестра, соответствующего

выбранному профилю (N = 0,1,2…):

HKEY_CURRENT_USER\Software\Validata\xpki\Profiles\<N>\store_0

(крипто-ядро Validata CSP версии 5)

HKEY_CURRENT_USER\Software\Validata\zpki\Profiles\<N>\store_0

(крипто-ядро Validata CSP версии 6)

HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_0

(крипто-ядро Microsoft CSP)

Например, если в реестре записано значение

«pse://signed/C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST_CRYP

T\local.pse», то в параметр надо передать значение

«C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST_CRYPT\»

Signing.LdapPath - взять значение целиком из ключа реестра:

HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_2

Настройка шифрования канала

Начиная с версии 4.4.0 шлюз может использовать для шифрования канала

протокол TLS 1.2. Валидата, начиная с версии 6.0, не поддерживает шифрование канала.

Шифрование может быть включено/выключено независимо от ЭЦП.

Encrypt - алгоритм шифрования канала:

<пусто > - не шифровать канал;

OpenSSL - использовать протокол TLS 1.2 для защиты канала;

Validata - использовать СКЗИ Валидата для защиты канала в режиме

шифрования отдельных пакетов. Необходимо задать также

параметр Encrypt.ProfileName= . Этот режим чрезвычайно

медленный и не предназначен для боевой эксплуатации;

Any - если поддерживается протокол TLS 1.2, то использовать TLS

1.2. Иначе, если включена ЭЦП Валидата, то использовать

СКЗИ Валидата (в режиме шифрования канала или отдельных

пакетов). Иначе, канал не шифруется;

Параметр не задан - если включена ЭЦП Валидата и поддерживается

протокол TLS 1.2, то использовать TLS 1.2, иначе,

использовать СКЗИ Валидата (в режиме шифрования канала

или отдельных пакетов). Если ЭЦП Валидата выключена, то

канал не шифруется.

При необходимости защиты канала рекомендуется использовать параметр

Encrypt=Any.

Настройка шифрования и ЭЦП «ТУМАР»

Шлюз работает с крипто-провайдером «ТУМАР» посредством ПО «Справочник

сертификатов» Валидата. В нем необходимо создать два профиля – один для ЭЦП, второй

для шифрования. Установка ПО и настройка профилей описана в документе «Ключи

ТУМАР в ASTSBridge.pdf».

Signing, Encrypt - константа:

Validata

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

7

Signing.ProfileName - имя профиля «Валидата» для ЭЦП (необязательный

параметр, если не задан, то ЭЦП будет отключено).

Encrypt.ProfileName - имя профиля «Валидата» для шифрования

(необязательный параметр, если не задан, то шифрование будет отключено);

Перед именем профиля в обоих параметрах должен быть обязательно указан

префикс rpki: Например, если в ПО «Справочник сертификатов» профиль ЭЦП

называется TUMAR_SIGN, то необходимо задать параметр

Signing.ProfileName=rpki:TUMAR_SIGN

Signing.InitFlags, Encrypt.InitFlags - комбинация флагов инициализации

(необязательный параметр):

1 - не выполнять автоматическое обновление СОС (списка отозванных

сертификатов) при инициализации;

Signing.Type, Signing.BasePath,

Encrypt.Type, Encrypt.BasePath - альтернативный способ инициализации (не

через имя профиля). Может оказаться полезным, если ПО «Справочник сертификатов»

Валидата устанавливалось под другим пользователем Windows (например, клиентская

часть шлюза запускается как сервис). В этом случае в реестре текущего пользователя не

будет записей об именах профилей и воспользоваться параметром ProfileName не удастся.

Значения этих параметров необходимо уточнить в реестре того пользователя, под которым

устанавливалось ПО «Справочник сертификатов» Валидата, а именно:

Signing.Type, Encrypt.Type - константа:

Microsoft CSP

Signing.BasePath, Encrypt.BasePath - взять только путь к файлу из ключа реестра,

соответствующего выбранному профилю (N = 0,1,2…):

HKEY_CURRENT_USER\Software\Validata\rpki\Profiles\<N>\store_0

Например, если в реестре записано значение

«pse://signed/C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST_CRYP

T\local.pse», то в параметр надо передать значение

«C:\Users\Test\AppData\Roaming\VALIDATA\rcs\TEST_CRYPT\»

ПОДКЛЮЧЕНИЕ ЧЕРЕЗ «ВСТРОЕННЫЙ ШЛЮЗ» НА CO-LOCATION

SERVER имя сервера доступа торговой системы, например, «GATEWAY»

SERVICE имя сервиса сервера доступа, например, «gateway»; вместо имени

возможно указание номеров портов, например, 18011/18012

BROADCAST широковещательный адрес для поиска серверов доступа торговой

системы, например

«10.63.1.255,10.63.3.255,10.61.1.255,10.61.3.255»

PREFBROADCAST адрес предпочтительного сервера доступа или сети,

необязательный параметр

USERID идентификатор пользователя в торговой/клиринговой системе;

PASSWORD пароль пользователя в торговой/клиринговой системе;

INTERFACE идентификатор шлюзового интерфейса, с которым желает

работать пользователь;

BOARDS список режимов, с которыми желает работать пользователь,

например: “ TQBR,TQOB,PSEQ” (необязательный параметр, если

не задан будут выбраны все доступные режимы);

CACHEFOLDER каталог для кеширования описания интерфейсов, загружаемых из

торговой системы. Если параметр не указан, кеширование не

выполняется, а интерфейс скачивается из торговой системы при

каждом подключении.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

8

LOGLEVEL

Уровень внутреннего логирования транспортного протокола:

 “0” – логирование отключено (значение по умолчанию);

 “1“ – “30“ – логирование включено, число задает подробность

логирования.

COMPRESSION

сжатие трафика:

 “0” – не сжимать данные;

 “1” – сжимать данные (значение по умолчанию).

IPSRCORDER задает предпочтительные IP адреса источника (с каких сетевых

интерфейсов следует устанавливать соединение). Порядок адресов

в перечислении используется для определения предпочтительного

сервера. Если параметр RestrictList=0, то выполняются попытки

установить соединение и со всех остальных сетевых интерфейсов,

не перечисленных в IpSrcOrder, но с меньшим приоритетом. Если

параметр RestrictList=1, то попытки установления соединения

выполняются только с указанных сетевых интерфейсов, например,

“192.168.126.1, 192.168.56.1”.

RESTRICTLIST “0“ - поиск серверов доступа идет со всех доступных сетевых

интерфейсов (значение по умолчанию);

“1“ - поиск идет только с тех интерфейсов, которые указаны в

IpSrcOrder.

DIRECTCONNECT “0” – искать сервер Торговой Системы по UDP запросам

(значение по умолчанию);

“1” - не производить поиск сервера по UDP запросам, а

осуществить непосредственное TCP соединение на адреса,

указанные в Broadcast.

ТАКЖЕ ДЛЯ ВСЕХ СПОСОБОВ ПОДКЛЮЧЕНИЯ ПОДДЕРЖИВАЮТСЯ СЛЕДУЮЩИЕ ПАРАМЕТРЫ:

TIMEOUT время ожидания выполнения запроса сервером (торговой

системой). Для шлюзовой mtesrl.dll – в миллисекундах, для

embedded mtesrl.dll ("встроенный" шлюз) - в секундах. Значение

по умолчанию - 30 секунд. Если за указанное время от сервера не

будет получен ответ, начнется процедура реконнекта. Если обрыв

связи будет диагностирован раньше истечения таймаута,

реконнект начнется раньше;

LOGGING Строка в формате “N,M”, где первое число N – уровень

логирования вызовов API MTESRL.

 “0” отключить логирование операций (не создавать log-файл)

 “1” – логировать только ошибки

 “2” – логировать все вызовы функция

 “3” – логировать содержимое таблиц

 “4” – логировать содержимое таблиц и номера полей

 “5” - логировать сообщения транспортного протокола (только

для встроенной версии библиотеки);

Второе число M – уровень сбора статистики по соединению.

Статистика пишется в отдельный файл вида «mtesrl-YYYMMDD-

<userid>-stats.log».

 “0” – не собирать статистику;

 “1” – собирать статистику по времена исполнения запросов и

размеру ответов Торговой системы;

 “2” - собирать статистику и распределение запросов по запросам

таблицам.

По умолчанию включен уровень логирования 2,2.

Для полного отключения логирования необходимо задать строку

“LOGGING=0,0”

Срок хранения лог-файлов - 7 календарных дней. При вызове

функции MTEConnect более старые файлы автоматически

удаляются.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

9

KEEPLOGS Число дней хранения логов библиотеки. По умолчанию 7 дней.

Значение «0» - не удалять старые лог-файлы.

RETRIES количество попыток восстановить связь с ASTS Bridge Server в

случае коммуникационных проблем (по умолчанию 10).

CONNECTTIME максимальное время подключения или реконнекта. Для шлюзовой

mtesrl.dll – в миллисекундах, для embedded mtesrl.dll

("встроенный" шлюз) - в секундах. По умолчанию 1 минута.

Может быть задано любое значение в диапазоне от 5 до 300 сек.

Процедура реконнекта длится не более RETRIES попыток и не

дольше CONNECTTIME миллисекунд в зависимости от того, что

наступит быстрее. Значение данного таймаута является

приблизительным и может отличаться от заданного на несколько

секунд.

LOGFOLDER каталог для создания лог-файлов работы библиотеки. По

умолчанию лог-файлы создаются в одном каталоге с библиотекой.

LOGPREFIX позволяет задать строку-префикс, чтобы получить уникальные

имена лог-файлов при подключении к разным системам под

одним и тем же идентификатором.

FEEDBACK текстовая строка в произвольном формате, описывающая

клиентскую систему, подключающуюся к шлюзу. Например,

«FondAnalytic v3.5.456, e-mail: admin@example.com».

LANGUAGE язык сообщений, выдаваемых шлюзом и клиентской библиотекой

MTESRL. Для изменения языка сообщений, выдаваемых торговой

системой, необходимо воспользоваться транзакцией

CHANGE_LANGUAGE. Значения: “Russian” или “English”.

TRANSPORT Имя транспортной библиотеки: TSMR или Mustang. Если

параметр не задан, используется TSMR.

JUMBOSIZE Параметр используется только для транспортной библиотеки

Mustang. Позволяет получать от Торговой Системы пакеты

данных увеличенного размера.

 “0” – 60000 (работать без увеличенных пакетов), значение по-

умолчанию;

 “1” – 128КБ;

 “2” – 256КБ;

 “3” – 512КБ.

ErrorMsg

Указатель на буфер размером не менее 256 байт, куда в случае возникновения ошибки

будет помещена строка с описанием ошибки.

Возвращаемое значение:

В случае успеха функция возвращает дескриптор установленного соединения (значение

большее или равное MTE_OK). Полученный дескриптор соединения используется в

дальнейшем при вызове всех функций MTExxxx.

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. При этом в

аргумент ErrorMsg помещается описание проблемы.

Пример:

Установка соединения с сервером.

C++

int32 Idx;

char ErrorMsg[255];

...

Idx = MTEConnect(“HOST=192.168.0.10:15005\rSERVER=EQ_TEST\r

USERID=MU0000100001\rINTERFACE=IFCBroker_26”, ErrorMsg);

if(Idx < MTE_OK)

{

fprintf(stderr, “Ошибка при установке соединения: %s”, ErrorMsg);

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

10

 exit(1);

}

else

 fprintf(stdout, “Соединение установлено.”);

Pascal

Idx: Integer;

ErrorMsg: TMTEErrorMsg;

...

Idx := MTEConnect('HOST=192.168.0.10:15005'#13#10'SERVER=EQ_TEST'

#13#10'USERID=MU0000100001'#13#10'INTERFACE=IFCBroker_26',

@ErrorMsg);

if Idx < MTE_OK then

begin

 Writeln('Ошибка при установке соединения: ' + ErrorMsg);

 Halt;

end

else

 Writeln('Соединение установлено.');

ВЫБОР СПИСКА РЕЖИМОВ

Обычно список режимов, с которыми желает работать пользователь, задается в параметре

BOARDS= при вызове функции MTEConnect. Однако список режимов может быть выбран и

позднее с помощью функции MTESelectBoards. Разрешается использовать только один способ

выбора режимов: либо в параметре BOARDS= при вызове функции MTEConnect, либо функцией

MTESelectBoards. После вызова MTESelectBoards необходимо закрыть все таблицы и

открыть их заново, поскольку содержимое таблиц зависит от выбранных режимов.

С++

int32 WINAPI MTESelectBoards(int32 Idx, char * BoardsList,

 char *result);

Pascal

function MTESelectBoards(Idx: Integer; BoardList: LPSTR;

 ResultMsg: LPSTR): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, для которого нужно получить информацию.

BoardList

Указатель на строку, содержащую список идентификаторов режимов, разделенных

запятой. Например, “TQBR,TQNE,RPMA”.

ResultMsg

Указатель на буфер размером не менее 256 байт, куда в случае успешного выполнения

будет помещена строка текста с результатом обработки транзакции торговой системой.

Возвращаемое значение:

Если транзакция была обработана торговой системой, возвращается следующее:

MTE_OK – режимы выбраны;

MTE_TRANSREJECTED – запрос обработан, но был отвергнут торговым

сервером (указан недопустимый режим, нет прав на выполнение и т.п.);

MTE_TSMR - фатальный сбой при выполнении запроса (потеря соединения с

торговой системой и т.п.).

При этом в аргумент ResultMsg помещается строка текста с результатом обработки запроса

торговой системой.

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. Значение

поля ResultMsg при этом не определено.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

11

ПОЛУЧЕНИЕ СЛУЖЕБНОЙ И СЕРВИСНОЙ ИНФОРМАЦИИ

ПОЛУЧЕНИЕ ИНФОРМАЦИИ О ШЛЮЗЕ

Клиент может получать служебную и сервисную информацию о серверной части шлюза и

соответствующем сервере доступа торгово-клиринговой системы с помощью функции

MTEGetServInfo.

C++

int32 WINAPI MTEGetServInfo(int32 Idx, char ** ServInfo, int *Len);

Pascal

function MTEGetServInfo(Idx: Integer; var ServInfo: LPSTR;

 var Len: Integer): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, для которого нужно получить информацию.

ServInfo

Указатель на указатель на буфер в который будут помещены данные возвращаемые

функцией.

Len

Указатель на переменную в которую будет помещено значение длины данных

возвращаемых функцией.

Возвращаемое значение:

В случае успеха функция возвращает MTE_OK и помещает в аргумент ServInfo указатель

на буфер следующего формата.

Поле Тип данных (IBM

PC)

Длина

поля

Описание

Connected_To_ASTS INTEGER 4 Описывает состояние соединения с ТС.

Возможное значение:

 0 - не соединен;

 1 - соединен с «боевой» ТС, идут

боевые торги;

 2 - соединен с тестовой ТС;

 -1 – соединен с «боевой» ТС, идут

тестовые торги.

Session_Id INTEGER 4 Внутренний номер текущей торговой

сессии. Изменяется каждую торговую

сессию.

ASTS_Server_Name CHAR 33 Логическое имя серверов доступа ТС,

например, GATEWAY,

FOND_GATEWAY и т.д. Позволяет

определить к какой ТС подсоединен

шлюз: корп. рынок, тестовый и т.д.

Version_Major CHAR 1 Старший номер версии сервера шлюза.

Version_Minor CHAR 1 Младший номер версии сервера шлюза.

Version_Build CHAR 1 Номер сборки версии шлюза.

Это и предыдущие поля определяют

версию шлюза в порядке

Major.Minor.Build.

Beta_version CHAR 1 Является ли данный релиз бета-

версией.

Возможное значение: если не 0, то это

бета и соответственно, это ее номер.

Debug_flag CHAR 1 Является ли данный релиз отладочной

версией.

Возможное значение: значение больше

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

12

0 указывает на то, что версия является

отладочной.

Test_flag CHAR 1 Является ли данный релиз тестовой

версией.

Возможное значение: значение больше

0 указывает на то, что версия является

тестовой.

Start_Time INTEGER 4 Время старта новой сессии (задается в

конфигурационном файле шлюза) в

формате ЧЧММСС. Внимание: это

целочисленное значение.

Stop_Time_Min INTEGER 4 Время завершения работы и

автоматической остановки шлюза

(задается в конфигурационном файле

шлюза) в формате ЧЧММСС.

Внимание: это целочисленное значение.

Stop_Time_Max INTEGER 4 Равно Stop_Time_Min.

Next_Event INTEGER 4 Следующее ожидаемое событие в

Диспетчере Расписания для

соответствующего интерфейсного

сервера.

Возможные значения: 0 - ожидается

старт новой торговой сессии, 1 -

ожидается окончание текущей торговой

сессии.

Event_Date INTEGER 4 Дата ожидаемого события в формате

ДДММГГГГ. Внимание: это

целочисленное значение.

BoardsSelected нультерминированная

строка символов

пере-

менная

Список идентификаторов выбранных

режимов торгов, разделенный

запятыми.

UserID CHAR,

нультерминированная

строка

13 Идентификатор пользователя

используемый интерфейсным сервером

для данного соединения.

SystemId CHAR 1 Тип торговой системы, возможные

значения:

“P” - фондовый рынок или денежный

рынок;

“C” - валютный рынок;

“F” – срочный рынок.

ServerIp нультерминированная

строка символов

пере-

менная

IP-адрес сервера доступа торговой

системы, например, «195.1.3.51».

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx.

ПОЛУЧЕНИЕ ИНФОРМАЦИИ О ВЕРСИИ КЛИЕНТСКОЙ БИБЛИОТЕКИ

Клиент может получить информацию о версии клиентской библиотеки шлюза с помощью функции

MTEGetVersion.

C++

char * WINAPI MTEGetVersion();

Pascal

function MTEGetVersion: LPSTR; stdcall;

Аргументы:

отсутствуют

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

13

Возвращаемое значение:

Указатель на ASCIIZ-строку, содержащую текстовое описание версии клиентской

библиотеки, например, «MTESrl library 3.8.93».

ПОЛУЧЕНИЕ ИНФОРМАЦИИ О СОСТОЯНИИ СОЕДИНЕНИЯ

Для получения текущего состояния соединения с ASTS Bridge может быть использована функция

MTEConnectionStatus.

С++

int32 WINAPI MTEConnectionStatus(int32 Idx);

Pascal

function MTEConnectionStatus(Idx: Integer): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, для которого нужно получить информацию.

Возвращаемое значение:

Один из следующих кодов MTE_xxx:

MTE_OK Соединение установлено

MTE_INVALIDCONNECT Указан недопустимый дескриптор соединения

MTE_SRVUNAVAIL Недоступен сервер ASTS Bridge

MTE_TEUNAVAIL Недоступна торговая система

СБОР СТАТИСТИКИ ПО СОЕДИНЕНИЮ

Для получения статистической информации по соединению (флаги соединения, объемы

переданных данных и т.п.) предназначена функция MTEConnectionStats.

C++

int32 WINAPI MTEConnectionStats(int32 Idx, ConnectionStats * Stats);

Pascal++

function MTEConnectionStats(Idx: Integer; var Stats: TMTEConnStats):

 Integer; stdcall;

Idx

Дескриптор соединения, для которого нужно получить информацию.

Возвращаемое значение:

В случае успеха функция возвращает MTE_OK и заполняет структуру Stats

статистической информацией о соединении. Структура Stats имеет следующий формат:

Size int32 Входное поле, должно быть заполнено sizeof(Stats)

Properties uint32 Флаги соединения, комбинация значений

ZLIB_COMPRESSED, FLAG_ENCRYPTED,

FLAG_SIGNING_ON

SentPackets uint32 Число пакетов, отправленных на сервер ASTS Bridge

RecvPackets uint32 Число пакетов, полученных с сервера ASTS Bridge

SentBytes uint32 Количество байт, отправленных на сервер ASTS Bridge, с

учетом сжатия

RecvBytes uint32 Количество байт, полученных с сервера ASTS Bridge, с

учетом сжатия

ServerIpAddress uint32 IP-адрес сервера ASTS Bridge

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

14

ReconnectCount uint32 Число повторных подключений (reconnect) к серверу ASTS

Bridge

SentUncompressed uint32 Количество байт, отправленных на сервер ASTS Bridge, без

учета сжатия

RecvUncompressed uint32 Количество байт, полученных с сервера ASTS Bridge, без

учета сжатия

ServerName char[64] Идентификатор сервера ASTS Bridge

TsmrPacketSize uint32 Размер пакета протокола TSMR, в байтах (только для

версии co-location)

TsmrSent uint32 Количество байт, отправленных в ТС по протоколу TSMR

(только для версии co-location)

TsmrRecv uint32 Количество байт, полученных из ТС по протоколу TSMR

(только для версии co-location)

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx.

ПОЛУЧЕНИЕ ОПИСАНИЯ ИНФОРМАЦИОННЫХ ОБЪЕКТОВ

Описание информационных объектов торговой системы содержит список таблиц, транзакций, их

полей и некоторых вспомогательных объектов, доступных клиенту. Для получения описания

используются функции MTEStructure, MTEStructure2 или MTEStructureEx. Функции

MTEStructure2 и MTEStructureEx возвращают расширенный набор характеристик объектов

торговой системы (см. Приложение 1. Формат буфера для функций MTEStructure, MTEStructure2 и

MTEStructureEx).Функция MTEStructureEx полностью покрывает возможности старых

функций: вызов MTEStructure аналогичен вызову MTEStructureEx с параметром Version=0,

вызов MTEStructure2 аналогичен вызову MTEStructureEx с параметром Version=2.

C++

int32 WINAPI MTEStructure(int32 Idx, MTEMsg **Msg);

int32 WINAPI MTEStructure2(int32 Idx, MTEMsg **Msg);

int32 WINAPI MTEStructureEx(int32 Idx, int32 Version, MTEMsg **Msg);

Pascal

function MTEStructure(Idx: Integer; var Msg: PMTEMsg): Integer; stdcall

function MTEStructure2(Idx: Integer; var Msg: PMTEMsg):Integer;stdcall;

function MTEStructureEx(Idx: Integer; Version: Integer; var Msg:

 PMTEMsg):Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, для которого нужно получить информацию.

Version

[Только для функции MTEStructureEx] Значение от 0 до 5 - требуемая версия структуры

описания информационных объектов ТС. Старшие версии структуры содержат более

подробные характеристики объектов ТС.

Начиная с версии, 3 в данном параметре могут указываться опции, позволяющие получить

дополнительную информацию об интерфейсе ТС. Опции комбинируются между собой и с

номером версии с помощью бинарного оператора OR.

В настоящий момент поддерживаются следующие опции:

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

15

Версия Опция Назначение

>= 3 STRUCTURE_LOCALIZATION
= 0x0100

Поля «Заголовок» и «Описание» в интерфейсе

передаются на всех языках, поддерживаемых ТС.

Вместо типа String для этих полей используется

конструкция:
КолвоЯзыков Integer

Строка1 String

Строка2 String

...

СтрокаN String

Каждая строка содержит в начале префикс языка

«ru:», «en:» или «uk:», например, «ru:Номер заявки»,

«en:Order number».

Msg

Адрес переменной (имеющей тип "указатель на TMTEMsg/MTEMSG"), куда будет

помещен указатель на буфер, содержащий описание информационных объектов. Память

под данный буфер выделяется и освобождается библиотекой. Формат буфера для функций

MTEStructure и MTEStructure2 описан в приложении 1. Структура TMTEMsg определена

так:

С++

typedef struct {

 int32_t DataLen; // Длина следующих далее данных

 char Data[1]; // Псевдо-переменная

} MTEMSG;

// данные длиной DataLen следуют непосредственно за данными

// этой структуры.

Pascal

PMTEMsg = ^TMTEMsg;

TMTEMsg = record

 DataLen: Integer; // Длина следующих далее данных

 Data: record end; // Данные переменной длины

end;

Возвращаемое значение:

В случае успеха функция возвращает MTE_OK и помещает в аргумент Msg указатель на

буфер с описанием.

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. Если

возвращен код ошибки MTE_TSMR, поле Data структуры Msg содержит текст сообщения

об ошибке длиной DataLen символов.

Пример:

Получение описания доступных информационных объектов для сеанса с номером Idx.

С++

int32 Idx; // Инициализирована вызовом MTEConnect

char ErrorMsg[255];

MTEMsg *Msg;

char *Data;

int32 err;

...

if ((err = MTEStructure(Idx, &Msg)) != MTE_OK) {

 if (Err == MTE_TSMR) {

 Data = (char *)(Msg + 1);

 fprintf(stderr, “Ошибка: %s\n”, Data);

 } else

 fprintf(stderr, “Ошибка: %s\n”, MTEErrorMsg(Err));

} else

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

16

 fprintf(“Описание информационных объектов получено.\n”);

Data = (char *)(Msg + 1); // Собственно данные

Pascal

Idx: Integer; // Инициализирована вызовом MTEConnect

Err: Integer;

Msg: PMTEMsg;

S: string;

Data: PAnsiChar;

...

Err := MTEStructure(Idx, Msg);

if Err <> MTE_OK then

 if Err = MTE_TSMR then begin

 SetString(S, @Msg.Data, Msg.DataLen);

 Writeln('Ошибка: ' + S);

 end else

 Writeln('Ошибка: ' + MTEErrorMsg(Err))

else

 Writeln('Описание информационных объектов получено.);

Data := @Msg.Data; // собственно данные

РАБОТА С ИНФОРМАЦИОННЫМИ ОБЪЕКТАМИ

Работа с информационными объектами включает работу с таблицами и выполнение транзакций.

ВЫПОЛНЕНИЕ ТРАНЗАКЦИЙ

Операции, такие как постановка или снятие заявки, называемые также транзакциями, выполняются

с помощью функций MTEExecTrans, MTEExecTransIP и MTEExecTransEx.

C++

int32 WINAPI MTEExecTrans(int32 Idx, char *TransName, char *Params,

 char *ResultMsg);

int32 WINAPI MTEExecTransIP(int32 Idx, char *TransName, char *Params,

 char *ResultMsg, int32 ClientIP);

Pascal

function MTEExecTrans(Idx: Integer; TransName, Params,

 ResultMsg: LPSTR): Integer; stdcall;

function MTEExecTransIP(Idx: Integer; TransName, Params,

 ResultMsg: LPSTR; ClientIP: Integer): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, на котором выполняется транзакция.

TransName

Указатель на ASCIIZ-строку c именем транзакции. Допустимые имена могут быть

получены вызовом функций MTEStructure/MTEStructure2/MTEStructureEx.

Params

Указатель на ASCIIZ-строку, содержащую параметры транзакции. Длина строки и ее

содержимое должны соответствовать описанию входных полей транзакции, полученном с

помощью функций MTEStructure/MTEStructure2/MTEStructureEx. Все поля

должны быть представлены в текстовом виде в формате торговой системы в соответствие

со своим типом (см. приложение 1) следующим образом:

ftChar Дополняется справа пробелами до длины, указанной в описании поля.

Например, для поля типа ftChar(12) строка "USER" должна быть

представлена как "USER "

ftInteger Дополняется слева нулями до нужной длины. Например, значение 127

с типом ftInteger(10) преобразуется в строку "0000000127".

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

17

ftFixed Оставляется два знака после десятичной точки, убирается десятичная

точка, дополняется слева нулями до нужной длины. Например,

значение 927,4 с типом ftFixed(8) преобразуется в строку "00092740"

ftFloat Оставляется N знаков после десятичной точки, убирается десятичная

точка, дополняется слева нулями до нужной длины. Значение N

зависит от формата представления цен для финансового инструмента,

к которому относится данное поле. Например, значение 26,75 с типом

ftFloat(9) для инструмента с N = 4 преобразуется в строку "000267500"

ftDate Представляется в формате YYYYMMDD. Например значение 24

августа 1999г. преобразуется к "19990824"

ftTime Представляется в формате HHMMSS. Например значение 16:27:39

преобразуется к "162739"

ftFloatPoint Дополняется слева нулями до нужной длины, десятичная точка

остается. Например, значение 5,617 с типом ftFloatPoint(9)

преобразуется в строку "00005.617"

Примечание: в полях любого типа можно передать пустое значение (NULL), для

этого следует использовать строку пробелов нужной длины.

ClientIp

(для функции MTEExecTransIP) IP-адрес клиента, он имени которого выполняется

данные транзакции. Используется в интерфейсах для технических центров и региональных

бирж.

ResultMsg

Указатель на буфер размером не менее 256 байт, куда в случае успешного выполнения

будет помещена строка текста с результатом обработки транзакции торговой системой.

Возвращаемое значение:

Если транзакция была обработана торговой системой, возвращается следующее:

MTE_OK - транзакция выполнена;

MTE_TRANSREJECTED - транзакция обработана, но была отвергнута торговым

сервером (недопустимые параметры, нет прав на выполнение и т.п.);

MTE_TSMR - фатальный сбой при выполнении транзакции (потеря соединения с

торговой системой и т.п.).

При этом в аргумент ResultMsg помещается строка текста с результатом обработки

транзакции торговой системой.

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. Значение

поля ResultMsg при этом не определено.

Пример:

Допустим в описании информационных объектов, полученном с помощью MTEStructure,

определена транзакция "Поставить заявку" со следующими полями:

ORDER // Имя транзакции

 BuySell: ftChar(1) // "B" - покупка, "S" - продажа

 SecBoard: ftChar(4) // код режима торгов

 SecCode: ftChar(12) // код инструмента

 Price: ftFloat(9) // цена

 Quantity: ftInteger(10) // кол-во лотов

Приведенный ниже фрагмент кода ставит заявку на покупку 14 лотов инструмента

"USD000000TOD" в режиме «CETS» по цене 26,15 (для этого инструмента формат

представления цен содержит 4 знака после десятичной точки):

С++

int32 Idx; // Инициализирована вызовом MTEConnect

int32 Err;

char *ResultMsg;

...

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

18

Err = MTEExecTrans(Idx, “ORDER”,

“BCETSUSD000000TOD0002615000000000014”, ResultMsg);

if(Err == MTE_OK)

 fprintf(stdout,”Транзакция выполнена: %s\n”, ResultMsg);

else if(Err == MTE_TSMR)

 fprintf(stdout,”Транзакция НЕ выполнена: %s\n”, ResultMsg);

else fprintf(stderr,”Ошибка: %s\n”, MTEErrorMsg(Err));

Pascal

Idx: Integer; // Инициализирована вызовом MTEConnect

Err: Integer;

ResultMsg: TErrorMsg;

...

Err := MTEExecTrans(Idx, 'ORDER',

'BCETSUSD000000TOD0002615000000000014', @ResultMsg);

case Err of

 MTE_OK: Writeln('Транзакция выполнена: ' + ResultMsg);

 MTE_TSMR, MTE_TRANSREJECTED: Writeln('Транзакция НЕ выполнена:

' + ResultMsg);

 else Writeln('Ошибка: ' + MTEErrorMsg(Err));

end;

Примечание 1: Для каждого соединения, транзакции и информационные запросы передаются в

торговую систему последовательно: отправка новой транзакции или запроса возможна только

после получения ответа на предыдущий запрос. Для исключения задержек, рекомендуется:

• Использовать раздельные соединения для передачи транзакций и для запросов таблиц

торговой системы.

• При больших пиковых частотах транзакций, использовать несколько соединений с

балансировкой их загрузки.

Примечание 2: При работе с разделенной системой (Торговая + Клиринговая система) транзакция

«Смена пароля» должна выполняться следующим образом: сначала необходимо отправить

транзакцию CHANGE_PASSWORD в Торговую систему, а после ее успешного исполнения

необходимо отправить аналогичную транзакцию в Клиринговую систему. Это необходимо для

корректной работы механизма автоматического реконнекта к Клиринговой системе.

Новые транзакции Торговой системы могут возвращать несколько ответов, либо возвращать

строку-ответ длиной более 255 символов. Для таких транзакций рекомендуется использовать

функцию MTEExecTransEx, которая возвращает массив ответов торговой системы и текстовые

сообщения неограниченной длины:

C++

int32 WINAPI MTEExecTransEx(int32 Idx, char *TransName, char *Params,

 int32 ClientIp, MTEExecTransResult *Reply);

Pascal

function MTEExecTransEx(Idx: Integer; TransName, Params: LPSTR;

 ClientIp: Integer; var Reply: TMTEExecTransResult): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, на котором выполняется транзакция.

TransName

Указатель на ASCIIZ-строку c именем транзакции. Допустимые имена могут быть

получены вызовом функции MTEStructure/MTEStructure2/MTEStructureEx.

Params

Указатель на ASCIIZ-строку, содержащую параметры транзакции. Длина строки и ее

содержимое должны соответствовать описанию входных полей транзакции, полученном с

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

19

помощью функций MTEStructure/MTEStructure2/MTEStructureEx. Все поля

должны быть представлены в текстовом виде в формате торговой системы (см.

MTEExecTrans).

ClientIp

IP-адрес клиента, он имени которого выполняется данные транзакции. Используется в

интерфейсах для технических центров и региональных бирж.

Reply

Указатель на структуру, в которую будет помещен результат исполнения транзакции и

ответ торговой системы (ТС). Структура TMTEExecTransResult /

MTEExecTransResult определена так:

С++

typedef struct TransResult {

 // количество записей в поле replies

 uint32_t replyCount;

 // указатель на массив записей MTETransReply

 MteTransReply* replies;

} MteTransResult;

// один ответ торговой системы

typedef struct TransReply {

 int32_t errCode; // код возврата (см. Возвращаемое

значение)

 int32_t msgCode; // номер сообщения ТС (который

указывается в тексте сообщения в круглых скобках)

 char* msgText; // текстовое сообщение ТС

 int32_t paramCount; // количество параметров в ответе ТС

// указатель на массив записей MTETransParam

 MteTransParam* params;

} MteTransReply;

// дополнительный параметр в ответе на транзакцию

typedef struct TransParam {

 char* name; // идентификатор параметра

 char* value; // значение параметра

} MteTransParam;

Pascal

TMTEExecTransResult = record

 // количество записей в поле Replies

 ReplyCount: Longword;

 // указатель на массив записей TMTETransReply

 Replies: PMTETransReplies;

end;

// один ответ торговой системы

TMTETransReply = record

 ErrCode: TMTEResult; // код возврата (см. Возвращаемое

значение)

 MsgCode: Integer; // номер сообщения ТС (который

указывается в тексте сообщения в круглых скобках)

 MsgText: PAnsiChar; // текстовое сообщение ТС

 ParamCount: Integer; // количество параметров в ответе ТС

 // указатель на массив записей TMTETransParam

 Params: PMTETransParams;

end;

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

20

// дополнительный параметр в ответе на транзакцию

TMTETransParam = record

 Name: PAnsiChar; // идентификатор параметра

 Value: PAnsiChar; // значение параметра

end;

Большинство транзакций торговой системы возвращает ровно один ответ, соответственно

поле ReplyCount равно 1 и Replies содержит 1 запись. Пример транзакции,

возвращающей более одного ответа – транзакция ORDER_AMEND (изменение заявки).

Возвращаемое значение:

Если транзакция была обработана торговой системой, возвращается следующее:

• MTE_OK - транзакция выполнена;

• MTE_TRANSREJECTED - транзакция обработана, но была отвергнута торговым

сервером (недопустимые параметры, нет прав на выполнение и т.п.);

• MTE_TSMR - фатальный сбой при выполнении транзакции (потеря соединения с

торговой системой и т.п.).

 Дополнительные параметры, которые могут присутствовать в ответе. Количество

параметров определяется полем ParamCount.

• ST – время начала обработки транзакции ядром торговой системы в формате

ST=HHMMSSmicroseconds;

• ON – номер зарегистрированной заявки;

• IN – публичный номер заявки в потоке рыночных данных по протоколу FAST;

указывается только для тех заявок, которые подлежат публикации в FAST-потоке.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

21

РАБОТА С ТАБЛИЦАМИ

Работа с таблицами включает в себя следующие шаги:

1. Открытие таблицы

2. Периодический запрос изменений

3. Закрытие таблицы

ОТКРЫТИЕ ТАБЛИЦЫ

Работа с таблицей торговой системы начинается с вызова функции MTEOpenTable. Функция

открывает таблицу и возвращает часть или все текущее содержимое таблицы.

C++

int32 WINAPI MTEOpenTable(int32 Idx, char *TableName, char *Params,

 int32 Complete, MTEMSG **Msg);

Pascal

function MTEOpenTable(Idx: Integer; TableName, Params: LPSTR;

 Complete: BOOL; var Msg: PMTEMsg): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, полученный с помощью вызова MTEConnect.

TableName

Указатель на ASCIIZ-строку c именем таблицы. Допустимые имена могут быть получены

вызовом функции MTEStructure/MTEStructure2/MTEStructureEx.

Params

Указатель на ASCIIZ-строку, содержащую параметры таблицы. Длина строки и ее

содержимое должны соответствовать описанию входных полей таблицы, полученном с

помощью функций MTEStructure/MTEStructure2/MTEStructureEx. Все поля должны

быть представлены в текстовом виде в формате торговой системы (см. MTEExecTrans).

Complete

Флаг, позволяющий запросить все содержимое таблицы или только часть. Используется

следующим образом:

TRUE Функция возвращает всю информацию, содержащуюся в данный момент в

таблице. Выполняет столько обращений к торговой системе, сколько

нужно для получения всех данных. При большом объеме таблицы

(например "Сделки") может выполняться долго и даже привести к потере

соединения из-за таймаута. Если все содержимое сразу не требуется и

чтобы уменьшить время выполнения, следует использовать значение

FALSE.

FALSE Функция возвращается только часть данных или вообще ничего, в

зависимости от типа таблицы. Выполняет не более одного обращения к

торговой системе. Остальные данные рассматриваются как обновления и

должны дочитываться в цикле запроса изменений с помощью вызовов

MTEAddTable/MTERefresh.

Msg

Адрес переменной (имеющей тип "указатель на TMTEMsg/MTEMSG"), куда в случае успеха

будет помещен указатель на буфер, содержащий информацию из открытой таблицы.

Формат буфера описан в приложении 2.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

22

Возвращаемое значение:

В случае успеха функция возвращает дескриптор открытой таблицы (значение большее

или равное MTE_OK). Полученный дескриптор используется в дальнейшем при вызове

функции MTEAddTable.

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. Если

возвращен код ошибки MTE_TSMR, поле Data структуры Msg содержит текст сообщения об

ошибке длиной DataLen символов.

ЗАПРОС ИЗМЕНЕНИЙ

Запрос изменений выполняется в пакетном режиме, т.е. одновременно запрашиваются изменения

по нескольким открытым таблицам. Для этого запрос сначала формируется путем нескольких

вызовов MTEAddTable, а затем выполняется с помощью MTERefresh. Вызов других функций

библиотеки (кроме MTEErrorMsg) между двумя этими функциями запрещен.

Функция MTEAddTable добавляет в очередь (пакет запросов) запрос на получение изменений в

таблице, с момента предыдущего запроса изменений.

C++

int32 WINAPI MTEAddTable(int32 Idx, int32 HTable, int32 Ref);

Pascal

function MTEAddTable(Idx, HTable, Ref: Integer): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, полученный с помощью вызова MTEConnect.

HTable

Дескриптор таблицы, полученный с помощью вызова MTEOpenTable.

Ref

Дополнительный параметр, используемый клиентом по своему усмотрению. Применяется

обычно для идентификации информации, предназначенной данной таблице, в буфере,

возвращаемом функцией MTERefresh.

Возвращаемое значение:

Один из кодов ошибки MTE_xxxx.

Функция MTERefresh отправляет на сервер пакет запросов на получение изменений,

сформированный вызовами MTEAddTable, и возвращает эти изменения.

C++

int32 WINAPI MTERefresh(int32 Idx, MTEMSG **Msg);

Pascal

function MTERefresh(Idx: Integer; var Msg: PMTEMsg): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, полученный с помощью вызова MTEConnect.

Msg

Адрес переменной (имеющей тип "указатель на TMTEMsg/MTEMSG "), куда в случае успеха

будет помещен указатель на буфер, содержащий полученные обновления. Формат буфера

описан в приложении 3.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

23

Возвращаемое значение:

В случае успеха функция возвращает MTE_OK и помещает в аргумент Msg указатель на

полученные данные.

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. Если

возвращен код ошибки MTE_TSMR, поле Data структуры Msg содержит текст сообщения об

ошибке длиной DataLen символов.

ЗАКРЫТИЕ ТАБЛИЦЫ

По окончании работы с таблицей ее необходимо закрыть, используя функцию MTECloseTable.

После вызова этой функции дескриптор таблицы не может более использоваться.

C++

int32 WINAPI MTECloseTable(int32 Idx, int32 HTable);

Pascal

function MTECloseTable(Idx, HTable: Integer): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, полученный с помощью вызова MTEConnect.

HTable

Дескриптор закрываемой таблицы, полученный с помощью вызова MTEOpenTable.

Возвращаемое значение:

Один из кодов ошибки MTE_xxxx.

ПРИМЕР РАБОТЫ С ТАБЛИЦАМИ

Допустим в описании информационных объектов, полученном с помощью MTEStructure,

определены таблицы "Ценные бумаги" и "Сделки" со следующими входными полями:

SECURITIES // Имя таблицы (Ценные бумаги)

 Market: ftChar(4) // Код рынка

 Board: ftChar(4) // Код режима торгов

TRADES // Таблица "Сделки" без параметров

В следующем фрагменте кода показано как следует работать с таблицами торговой системы.

Таблицы открываются, периодически запрашивается изменение их содержимого, и затем таблицы

закрываются.

С++

int32 Idx; // Инициализирована вызовом MTEConnect

MTEMsg *Msg;

char *Data;

int32 HSecurs, Htrades;

...

HSecurs = MTEOpenTable(Idx, “SECURITIES”, “CETS “, 1 /*True*/,

&Msg);

Data = (char *)(Msg + 1);

...

// Обработка полученных данных

...

HTrades = MTEOpenTable(Idx, “TRADES”, “”, 0/*False*/, Msg);

Data = (char *)(Msg + 1);

...

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

24

// Обработка полученных данных

...

do

{

 MTEAddTable(Idx, HSecurs, 0);

 MTEAddTable(Idx, HTrades, 1);

 MTERefresh(Idx, &Msg);

 Data = (char *)(Msg + 1);

 ...

 // Обработка обновлений

 ...

}while(!Terminated);

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

Pascal

Idx: Integer; // Инициализирована вызовом MTEConnect

Msg: PMTEMsg;

HSecurs, HTrades: Integer;

Data: PAnsiChar;

...

HSecurs := MTEOpenTable(Idx, 'SECURITIES', 'CETS ', True,

Msg);

...

// Обработка полученных данных

...

HTrades := MTEOpenTable(Idx, 'TRADES', '', False, Msg);

...

// Обработка полученных данных

...

repeat

 MTEAddTable(Idx, HSecurs, 0);

 MTEAddTable(Idx, HTrades, 1);

 MTERefresh(Idx, Msg);

 Data := @Msg.Data;

 ...

 // Обработка обновлений

 ...

until Terminated;

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

ЗАМЕЧАНИЯ ПО РАБОТЕ С ТАБЛИЦАМИ

Замечание 1. Во избежание разрыва соединения по таймауту со стороны сервера рекомендуется:

во-первых, в настройке шлюза не устанавливать слишком маленькое (меньше 60 секунд) значение

DisconnectIfIdleFor; во-вторых, регулярно (примерно с интервалом в 30 секунд) поддерживать

соединение в активном состоянии – например, запрашивая обновление таблицы TESYSTIME. Для

контроля состояния соединения может быть использована транзакция USER_HEARTBEAT.

Замечание 2. Большинство таблиц торговой системы можно открывать (как в одном, так и в

нескольких экземплярах) и закрывать произвольное число раз в течение сеанса связи с сервером.

Однако, некоторые таблицы могут быть открыты только один раз в течение сеанса. К таким

таблицам относится, например, таблицы ORDERS ("Заявки"), TRADES ("Сделки"), NEGDEALS

("Адресные (внесистемные) заявки"), ALL_TRADES ("Все сделки"), POSITIONS ("Позиции по

деньгам"), HOLDINGS ("Позиции по инструментам"), RM_INDICATIVE ("Параметры процентных

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

25

рисков"). Если такую таблицу закрыть, а затем открыть вновь, то содержимое таблицы, полученное

в первый раз, вновь получено не будет, а будут приходить только изменения.

В связи с вышесказанным, такие таблицы рекомендуется открывать только один раз в течение

сеанса связи и закрывать их только при завершении сеанса.

Замечание 3. Для таблиц с установленным флагом "tfClearOnUpdate - Очищать при обновлении"

(кроме таблицы EXT_ORDERBOOK) определен следующий порядок обработки обновлений: когда

таблица должна быть полностью очищена КолвоСтрок устанавливается равным 1, то есть,

возвращается одна строка со значением ДлинаДанных = 0 (см. приложение 2).

Для таблицы EXT_ORDERBOOK существуют два режима запроса информации по котировкам:

1. Для получения информации по одному инструменту, в запросе задаются непустые значения

для полей "Режим" и "Инструмент";

2. Для получения информации по котировкам всех доступных инструментов в одном запросе,

поля "Режим" и "Инструмент" заполняются символами пробела.

Соответственно, для первого способа в случае, когда таблица котировок должна быть очищена в

ответ на запрос, приходит таблица с одной строкой, содержащей следующие значения:

КолвоПолей =2 и ДлинаДанных = (длина поля "Режим" + длина поля "Инструмент"). В этой строке

содержатся только поля "Режим" и "Инструмент". Для второго случая в ответе на запрос могут

содержаться несколько таких строк (в которых присутствуют только значения полей "Режим" и

"Инструмент"), что означает очистку значений котировок для данных инструментов.

Обратите внимание на еще два момента: при первом запросе таблицы для всех доступных

инструментов, т.е. при открытии таблицы, могут прийти строки изначально характеризующие

пустую таблицу котировок, как это описано в предыдущем абзаце. Это связано с логикой выдачи

информации Торговой Системой: по данным бумагам в течение торговой сессии выставлялись

заявки, но все они были сняты на момент запроса. При последующих запросах выдается

информация только по инструментам, по которым произошли изменения в котировках.

Второй момент: тестовое приложение TEClient.exe отображает в окне котировок для всех

инструментов (т.е. при открытии таблицы с пустыми полями «Режим» и «Инструмент») только

данные последнего запроса на изменения, т.е. только те котировки, в которых произошли

изменения. Информация по инструментам, у которых не было изменений в котировках, будет

отсутствовать.

Замечание 4. Максимальная частота информационных запросов в единицу времени

регламентируется утверждённым биржей документом «Требования, предъявляемые ПАО

Московская Биржа к сопряжению внешних программно-технических средств (ВПТС) с

Программно-техническим комплексом Технического центра (ПТК ТЦ)». Для исключения задержек

в получении информации при пиках активности рынка допускается адаптивный интервал между

запросами: если объем полученного пакета данных превышает 30 кбайт, немедленно отправить

новый запрос на обновление. Если объем данных в пакете не превышает этой величины,

следующий запрос может быть отправлен через обычный интервал времени.

Замечание 5. При обработке буфера со строками таблицы построчная информация должна быть

объединена на основе значений в ключевых полях. В некоторых случаях, например при первичном

открытии таблицы SECURITIES, в одном буфере может встречаться несколько записей по одной и

той же строке, которые необходимо объединить. Помимо этого, как описано ниже в приложении,

буфер может содержать как полную строку (включая статические значения), так и только

информацию по изменениям. Код программы рекомендуется писать исходя из предположения, что

получение частичного набора полей возможно для любой таблицы.

ОПТИМИЗАЦИЯ ИСПОЛЬЗОВАНИЯ ПАМЯТИ

Все функции библиотеки MTESRL, возвращающие указатель на буфер с информацией (указатель

на структуру PMTEMsg/MTEMSG, например, MTEStructure, MTERefresh и другие) используют в

качестве приемного буфера одну и ту же область памяти (в рамках одного соединения, для разных

соединений используются разные области памяти). Назовем такие функции информационными.

Если при очередном вызове информационной функции размер получаемых данных превышает

размер выделенного для приема буфера, происходит выделение (Reallocation) большего блока

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

26

памяти. Таким образом максимальный размер выделенной памяти равен размеру максимального

полученного блока информации. Вся выделенная память освобождается при завершении

соединения с помощью функции MTEDisconnect.

Существует возможность освободить память, используемую в качестве приемного буфера, в

произвольный момент времени, не завершая соединения. Для этого предназначена функция

MTEFreeBuffer. Эту функцию следует вызывать только после обработки всех принятых данных.

Следует помнить, что это приведет к необходимости выделения памяти при следующем вызове

одной из информационных функций. Частый вызов функции MTEFreeBuffer может

отрицательно повлиять на производительность.

C++

int32 WINAPI MTEFreeBuffer(int32 Idx);

Pascal

function MTEFreeBuffer(Idx: Integer): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, полученный с помощью вызова MTEConnect, для которого

необходимо освободить память.

Возвращаемое значение:

Один из кодов ошибки MTE_xxxx.

Функция является устаревшей и поддерживается для совместимости со старыми системами

пользователей.

ВОССТАНОВЛЕНИЕ ПОСЛЕ СБОЯ НА ASTS Bridge

В процессе эксплуатации системы иногда может потребоваться перезапуск внешней системы или

шлюза в связи с возникновением критической ошибки. При этом необходимо обеспечить

восстановление работоспособности системы в кратчайшее сроки. В таких ситуациях

рекомендуется использовать следующую технологию: внешняя система с определенной

периодичностью производит резервное сохранение данных загруженных таблиц и состояний

внутренних структур шлюза в файлах; в случае сбоя системы используются данные из

сохраненных файлов для восстановления системы к состоянию, которое она имела на момент

резервного сохранения данных.

Библиотека MTESRL позволяет начать получение данных от ASTS Bridge не с “нуля”, а с

некоторого момента. Для этого предварительно должен быть сохранен “снимок” состояния

открытых таблиц. Впоследствии, например, в случае потери соединения с сервером шлюза, можно

восстановить состояние открытых таблиц и продолжить получение информации.

СОХРАНЕНИЕ СОСТОЯНИЯ ВНУТРЕННИХ СТРУКТУР ШЛЮЗА

Резервное сохранение состояния внутренних структур шлюза производится после запроса

изменений в таблицах и их обработки. Данную операцию можно производить после каждого

запроса изменений или после выполнения некоторого количества запросов. Как правило, на ряду с

сохранением состояний внутренних структур шлюза, сохраняются также текущее состояние всех

таблиц внешней системы. При этом обеспечивается сохранение полного текущего состояния

системы состоящей из внешней системы и шлюза. Ниже приведен подробный сценарий работы в

таких случаях.

Для получения текущего состояния открытых на сервере таблиц используется функция

MTEGetSnapshot.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

27

C++

int32 WINAPI MTEGetSnapshot(int32 Idx, char ** Snapshot, int *Len);

Pascal

function MTEGetSnapshot(Idx: Integer; var Snapshot: LPSTR;

 var Len: Integer): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, для которого необходимо получить «снимок» открытых таблиц.

Snapshot

Адрес переменной, куда в случае успеха будет помещен указатель на «снимок».

Len

Адрес переменной, куда в случае успеха будет помещена длина «снимка» (буфера,

указатель на который находится в Snapshot).

Возвращаемое значение:

В случае успеха функция возвращает MTE_OK.

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. Если

возвращен код ошибки MTE_TSMR, аргумент Snapshot указывает на текст сообщения об

ошибке, а аргумент Len содержит длину этого сообщения.

«Снимок» открытых на сервере таблиц может рассматриваться просто как буфер некоторых

двоичных данных. Его содержимое не несет для клиента никакой смысловой нагрузки.

В следующем фрагменте кода предполагается, что внешняя система выполнила подключение к

ASTS Bridge, получила структуру данных, открыла таблицы и перешла к циклу получения

изменений по таблицам:

С++

int32 Idx; // Инициализирована вызовом MTEConnect

MTEMsg *Msg;

char *DataPtr;

int32 *TablesIdx; // массив индексов полученных при MTEOpenTable

вызовах

int32 i,NumTables;// количество обновляемых таблиц

char *SnapshotBuf;// указатель на буфер для резервного сохранения

int32 SnapshotLen;// длина буфера для резервного сохранения

...

do

{

 for(i = 0; i < NumTables; i++)

 MTEAddTable(Idx, TablesIdx[i], i);

 MTERefresh(Idx, &Msg);

 DataPtr = (char *)(Msg + 1);

 ...

 // Обработка обновлений

 ...

 // Получения буфера состояний внутренних структур шлюза

 MTEGetSnapshot(Idx, &SnapshotBuf, &SnapshotLen);

 // сохранение буфера в файле

 ...

 // сохранение состояния ВС

 ...

}while(!Terminated);

Pascal

Idx: Integer; // Инициализирована вызовом MTEConnect

Msg: PMTEMsg;

DataPtr: PChar;

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

28

TablesIdx: array of Integer; // массив индексов полученных при

MTEOpenTable вызовах

i, NumTables: Integer; // количество обновляемых таблиц

SnapshotBuf: PChar; // указатель на буфер для резервного

сохранения

SnapshotLen: Integer; // длина буфера для резервного сохранения

...

repeat

 for i := 0 to NumTables – 1 do

 MTEAddTable(Idx, TablesIdx[i], i);

 MTERefresh(Idx, Msg);

 DataPtr = @Msg.Data;

 ...

 // Обработка обновлений

 ...

 // Получения буфера состояний внутренних структур шлюза

 MTEGetSnapshot(Idx, SnapshotBuf, SnapshotLen);

 // сохранение буфера в файле

 ...

 // сохранение состояния ВС

 ...

until Terminated;

ВОССТАНОВЛЕНИЕ СОСТОЯНИЯ ВНУТРЕННИХ СТРУКТУР ШЛЮЗА

Для получения списка открытых таблиц, содержащихся в заданном снепшоте, можно

воспользоваться функцией MTEGetTablesFromSnapshot. Данная функция может быть вызвана

до или после вызова функции MTESetSnapshot.

C++

int32 WINAPI MTEGetTablesFromSnapshot(int32 Idx, char * Snapshot,

 int Len, MTESnapTable **SnapTables);

Pascal

function MTEGetTablesFromSnapshot(Idx: Integer; Snapshot: LPSTR;

 Len: Integer, var SnapTables: PMTESnapTables): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, полученный с помощью вызова MTEConnect.

Snapshot

Указатель на буфер, в котором помещены данные полученные с помощью вызова

MTEGetSnapshot.

Len

Длина данных в передаваемом буфере.

SnapTables

Указатель на указатель на структуру MTESnapTable, куда в случае успеха будет

помещен указатель на сформированный буфер открытых таблиц. Память под данный

буфер выделяется библиотекой. При повторных вызовах функции используется тот же

самый буфер, поэтому результат должен быть сохранен внешней системой. Ниже описан

формат буфера открытых таблиц:

С++

typedef struct SnapTable {

 int32 Htable; // Дескриптор открытой таблицы

 char* TableName // Указатель на ASCIIZ-строку c именем

таблицы.

 char* Params; // Указатель на ASCIIZ-строку c

параметрами с которыми открывалась таблица.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

29

} MteSnapTable;

Pascal

TMTESnapTable = record

 HTable: Integer; // Handle of table

 TableName: PAnsiChar; // char, Zero-byte terminated, Table

Name

 Params: PAnsiChar; // char, Zero-byte terminated,

Parameters provided on open table

end;

PMTESnapTables = ^TMTESnapTables;

TMTESnapTables = array [0..999999] of TMTESnapTable;

Возвращаемое значение:

В случае отрицательного значения код возврата трактуется как один из кодов ошибки

MTE_xxxx.

В случае успешного выполнения запроса функция возвращает неотрицательное значение,

равное количеству открытых таблиц, и возвращает указатель на сформированный массив

структур открытых таблиц MTESnapTable через параметр SnapTables.

Восстановление состояния внутренних структур шлюза производится при перезапуске системы

или шлюза после сбоев для приведения системы к состоянию на момент сохранения резервной

копии. Данная операция должна производится только в рамках текущей торговой сессии и должна

правильно восстанавливать состояние внешней системы на тот момент, когда происходило

резервное сохранение состояния системы (см. MTEGetSnapshot). В результате данной операции

все открытые таблицы на шлюзе и дескрипторы этих таблиц восстанавливаются. То есть,

непосредственно после восстановления системы, можно использовать дескрипторы таблиц,

существовавшие до возникновения сбоя. Для восстановления состояния шлюза служит функция
MTESetSnapshot.

C++

int32 WINAPI MTESetSnapshot(int32 Idx, char * Snapshot, int Len,

 char *ErrorMsg);

Pascal

function MTESetSnapshot(Idx: Integer; Snapshot: LPSTR; Len: Integer;

 ErrorMsg: LPSTR): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, для которого восстанавливается состояние.

Snapshot

Указатель на буфер, содержащий предварительно снятый «снимок».

Len

Длина буфера, на который указывает Snapshot.

ErrorMsg

Указатель на буфер размером не менее 256 байт, куда будет помещена строка текста с

результатом восстановления состояния.

Возвращаемое значение:

Если функция была обработана торговой системой, возвращается следующее:

MTE_OK – восстановление выполнено;

MTE_TSMR - торговая система не смогла восстановить состояние.

При этом в аргумент ErrorMsg помещается строка текста с результатом, возвращенным

торговой системой.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

30

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. Значение

поля ErrorMsg при этом не определено.

В следующем фрагменте кода предполагается, что внешняя система выполнила резервное

сохранение своего состояния и состояния шлюза в один из моментов до произошедшего сбоя.

Производится полный перезапуск системы, включая сервер шлюза (Аналогично можно

действовать при перезапуске только внешней системы или только сервера шлюза). Система

выполнила подключение к ASTS Bridge и получила описание структуры данных с сервера:

С++

int32 Idx; // Инициализирована вызовом MTEConnect

MTEMsg *Msg;

char *DataPtr;

int32 *TablesIdx; // массив индексов для открытых таблиц

int32 i, NumTables; // количество обновляемых таблиц

char *SnapshotBuf; // указатель на буфер для данных которые

будут использованы при восстановлении состояния сервера шлюза

int32 SnapshotLen; // длина буфера

...

// Восстановление состояния внешней системы из сохраненных данных

// При этом восстанавливаются значения NumTables и массива

индексов открытых таблиц

...

// Загрузка сохраненного, после последнего вызова

// MTEGetSnapshot, буфера из файла

// (инициализация и загрузка буфера SnapshotBuf)

...

//Восстановление состояния внутренних структур шлюза

MTESetSnapshot(Idx, SnapshotBuf, SnapshotLen);

//переход к циклу нормальной работы внешней системы

do

{

 for(i = 0; i < NumTables; i++)

 MTEAddTable(Idx, TablesIdx[i], i);

 MTERefresh(Idx, &Msg);

 DataPtr = (char *)(Msg + 1);

 ...

 // Обработка обновлений

 ...

}while(!Terminated);

Pascal

Idx: Integer; // Инициализирована вызовом MTEConnect

Msg: PMTEMsg;

DataPtr: PChar;

TablesIdx: array of Integer; // массив индексов для открытых

таблиц

i, NumTables: Integer; // количество обновляемых таблиц

SnapshotBuf: PChar; // указатель на буфер для данных которые

будут использованы при восстановлении состояния сервера шлюза

SnapshotLen: Int32; // длина буфера

...

// Восстановление состояния внешней системы из сохраненных данных

// При этом восстанавливаются значения NumTables и массива

индексов открытых таблиц

...

// Загрузка сохраненного, после последнего вызова

// MTEGetSnapshot, буфера из файла

// (инициализация и загрузка буфера SnapshotBuf)

...

//Восстановление состояния внутренних структур шлюза

MTESetSnapshot(Idx, SnapshotBuf, SnapshotLen);

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

31

//переход к циклу нормальной работы внешней системы

repeat

 for i := 0 to NumTables – 1 do

 MTEAddTable(Idx, TablesIdx[i], i);

 MTERefresh(Idx, Msg);

 DataPtr = @Msg.Data;

 ...

 // Обработка обновлений

 ...

until Terminated;

АЛГОРИТМ ВОССТАНОВЛЕНИЯ ПОСЛЕ СБОЯ

Предположим, что мы:

1. Установили соединение с сервером ASTS Bridge c помощью MTEConnect;

2. Открыли несколько таблиц с помощью MTEOpenTable и сохранили их дескрипторы в

переменных hTable1, hTable2, ..., hTableN;

3. Выполняли транзакции и запрашивали обновления информационных таблиц, периодически

сохраняя «снимок» состояния с помощью функции MTEGetSnapshot;

4. Допустим, в какой-то момент соединение с сервером ASTS Bridge было нарушено. Процедура

восстановления будет выглядеть так:

5. Заново устанавливаем соединение с ASTS Bridge c помощью MTEConnect;

6. Вызываем MTESetSnapshot с последним сохраненным «снимком»;

7. Теперь можем пользоваться старыми дескрипторами таблиц hTable1, hTable2, ..., hTableN,

открытыми в предыдущем сеансе. Вызывать MTEOpenTable не нужно. Последующие

вызовы функции MTERefresh будут возвращать обновления таблиц, накопленные после

сохранения Snapshot.

Если данные, полученные до обрыва связи, были сохранены, использование механизма Get/Set

Snapshot позволяет существенно уменьшить время получения всех обновлений таблиц после

восстановления соединения.

ВЫБОРОЧНОЕ ОТКРЫТИЕ ТАБЛИЦ ИЗ СНЕПШОТА

Существует также альтернативный вариант восстановления после сбоя. Вместо того, чтобы

сохранять и восстанавливать полное состояние всех таблиц, можно восстановить из снепшота

только некоторые, особо объемные таблицы (например, «Заявки» и «Сделки»), а остальные

таблицы открыть обычным способом через MTEOpenTable. При этом отпадает необходимость

хранения вместе со снепшотом списка открытых таблиц и их дескрипторов. Достаточно сохранить

только сам снепшот, а затем открывать таблицы, содержащиеся в нем, с помощью функции

MTEOpenTableAtSnapshot. Данные по таблицам, отрытым таким способом, начнут приходить

не с «нуля», а начиная с момента, когда был сделан соответствующий снепшот. Вызывать

MTESetSnapshot в данном сценарии не требуется.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

32

C++

int32 WINAPI MTEOpenTableAtSnapshot (int32 Idx, char* TableName,

 char* Params, char* Snapshot, int SnapshotLen, MTEMsg **Msg);

Pascal

function MTEOpenTableAtSnapshot(Idx: Integer;

 TableName, Params, Snapshot: PAnsiChar;

 SnapshotLen: Integer; var Msg: PMTEMsg): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, полученный с помощью вызова MTEConnect.

TableName

Указатель на ASCIIZ-строку c именем таблицы. Допустимые имена могут быть получены

вызовом функции MTEStructure/MTEStructure2/MTEStructureEx.

Params

Указатель на ASCIIZ-строку, содержащую параметры таблицы. Длина строки и ее

содержимое должны соответствовать описанию входных полей таблицы, полученном с

помощью функций MTEStructure/MTEStructure2/MTEStructureEx. Все поля

должны быть представлены в текстовом виде в формате торговой системы (см.

MTEExecTrans).

Snapshot

Указатель на буфер, содержащий снепшот. Запрашиваемая таблица с указанными

параметрами должна содержаться в данном снепшоте, иначе функция вернет ошибку

MTE_TSMR. Если в данном параметре передан нулевой указатель, то функция ведет себя

аналогично вызову MTEOpenTable с параметром Complete=FALSE.

SnapshotLen

Длина буфера, содержащего снепшот.

Msg

Адрес переменной (имеющей тип "указатель на TMTEMsg/MTEMSG"), куда в случае успеха

будет помещен указатель на буфер, содержащий порцию обновлений по открытой

таблице. Формат буфера описан в приложении 2.

Возвращаемое значение:

В случае успеха функция возвращает дескриптор открытой таблицы (значение большее

или равное MTE_OK). Полученный дескриптор используется в дальнейшем при вызове

функции MTEAddTable.

При возникновении ошибки возвращается один из кодов ошибки MTE_xxxx. Если

возвращен код ошибки MTE_TSMR, поле Data структуры Msg содержит текст сообщения об

ошибке длиной DataLen символов.

Следующий фрагмент кода демонстрирует выборочное открытие таблицы «Заявки» из снепшота:

C++

int32 Idx; // Инициализирована вызовом MTEConnect

MTEMsg *Msg;

char *DataPtr;

char *Snapshot;

int32 Len;

int32 HSecurs, HTrades;

...

HSecurs = MTEOpenTable(Idx, “SECURITIES”, “EQBR “, 1 /*True*/,

 &Msg);

// Обработка полученных данных

...

HTrades = MTEOpenTable(Idx, “TRADES”, “”, 0 /*False*/, &Msg);

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

33

// Обработка полученных данных

...

// Здесь произошел сбой, сохраняем снепшот в файл и закрываем

таблицы

MTEGetSnapshot(Idx, &Snapshot, &Len);

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

...

// Начинаем восстановление, загружаем снепшот из файла и

открываем таблицы

HSecurs = MTEOpenTable(Idx, “SECURITIES”, “EQBR “,

 1 /*True*/, &Msg);

// Таблица SECURITIES открыта с «нуля», обработка данных

...

HTrades = MTEOpenTableAtSnapshot(Idx, “TRADES”, “”, Snapshot,

 Len, &Msg);

// Таблица TRADES открыта из снепшота, обработка данных

...

do {

 MTEAddTable(Idx, HSecurs, 0);

 MTEAddTable(Idx, HTrades, 1);

 MTERefresh(Idx, &Msg);

 DataPtr = (char *)(Msg + 1);

 // Обработка обновлений

 ...

} while (!Terminated);

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

Pascal

Idx: Integer; // Инициализирована вызовом MTEConnect

Msg: PMTEMsg;

HSecurs, HTrades: Integer;

Snapshot: PAnsiChar;

Len: Integer;

DataPtr: PAnsiChar;

...

HSecurs := MTEOpenTable(Idx, 'SECURITIES', 'EQBR ', True,Msg);

// Обработка полученных данных

...

HTrades := MTEOpenTable(Idx, 'TRADES', '', False, Msg);

// Обработка полученных данных

...

// Здесь произошел сбой, сохраняем снепшот в файл и закрываем

таблицы

MTEGetSnapshot(Idx, Snapshot, Len);

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

...

// Начинаем восстановление, загружаем снепшот из файла и

открываем таблицы

HSecurs := MTEOpenTable(Idx, 'SECURITIES', 'EQBR ', True,Msg);

// Таблица SECURITIES открыта с «нуля», обработка данных

...

HTrades := MTEOpenTableAtSnapshot(Idx, 'TRADES', '', Snapshot,

Len, Msg);

// Таблица TRADES открыта из снепшота, обработка данных

...

repeat

 MTEAddTable(Idx, HSecurs, 0);

 MTEAddTable(Idx, HTrades, 1);

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

34

 MTERefresh(Idx, Msg);

 DataPtr := @Msg.Data;

 // Обработка обновлений

 ...

until Terminated;

MTECloseTable(Idx, HSecurs);

MTECloseTable(Idx, HTrades);

ЗАВЕРШЕНИЕ СЕАНСА СВЯЗИ

По окончании работы с рынком клиент должен вызвать функцию MTEDisconnect.

C++

int32 WINAPI MTEDisconnect(int32 Idx);

Pascal

function MTEDisconnect(Idx: Integer): Integer; stdcall;

Аргументы:

Idx

Дескриптор соединения, полученный с помощью вызова MTEConnect, которое надо

закрыть.

Возвращаемое значение:

Один из кодов ошибки MTE_xxxx.

Пример:

Закрываем соединение, имеющее дескриптор Idx.

С++

int32 Idx; // Инициализирована вызовом MTEConnect

int32 Err;

...

Err = MTEDisconnect(Idx);

if (Err != MTE_OK)

 fprintf(stderr, “Ошибка: %s\n”, MTEErrorMsg(Err));

else

 fprintf(stdout,”Сеанс работы c рынком завершен\n”);

Pascal

Idx: Integer; // Инициализирована вызовом MTEConnect

Err: Integer;

...

Err := MTEDisconnect(Idx);

if Err <> MTE_OK then Writeln(MTEErrorMsg(Err)

 else Writeln('Сеанс работы c рынком завершен');

СООБЩЕНИЯ ОБ ОШИБКАХ

Все функции библиотеки возвращают коды ошибок MTE_xxxx. Для получения текстового

описания по коду ошибки могут использоваться функции MTEErrorMsg или MTEErrorMsgEx.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

35

C++

char * WINAPI MTEErrorMsg(int32 ErrorCode);

char * WINAPI MTEErrorMsgEx(int32 ErrorCode, char *Language);

Pascal

function MTEErrorMsg(ErrCode: Integer): LPSTR; stdcall;

function MTEErrorMsgEx(ErrCode: Integer; Language: PAnsiChar): LPSTR;

 stdcall;

Аргументы:

ErrorCode

Один из кодов MTE_xxxx.

Language

Требуемый язык, на котором должно быть получено сообщение об ошибке. Допустимые

значения: “English”, “Russian”, “Ukrainian”. Если задан недопустимый язык, будет

получено сообщение на английском языке. Функция MTEErrorMsg всегда возвращает

сообщение на английском языке.

Возвращаемое значение:

Указатель на ASCIIZ-строку, содержащую текстовое описание ошибки.

КОДЫ ОШИБОК

ID Код Описание

MTE_OK 0 Нет ошибок.

MTE_CONFIG -1 Ошибка в конфигурации: подключение к неправильному

серверу, на шлюзовом сервере не указаны сервисы, неверные

значения параметров в конфигурационном файле.

MTE_SRVUNAVAIL -2 Сервер не доступен. Не запущен ASTS Bridge Server, недоступна

торговая система, либо нарушена связь.

MTE_LOGERROR -3 При вызове MTEConnect не удалось создать log-файл.

MTE_INVALIDCONNECT -4 Задан недопустимый дескриптор соединения. Не было вызова

MTEConnect, либо уже был вызвана функция

MTEDisconnect.

MTE_NOTCONNECTED -5 Соединение с указанным дескриптором было разорвано

вследствие возникновения ошибки (не в результате вызова

MTEDisconnect). Ошибка в ASTS Bridge Server, торговая

система завершила работу, либо нарушена связь.

MTE_WRITE -6 Ошибка записи в порт. Ошибка в ASTS Bridge Server, либо

нарушена связь.

MTE_READ -7 Ошибка чтения из порта. Ошибка в ASTS Bridge Server, либо

нарушена связь.

MTE_TSMR -8 Ошибка на уровне протокола взаимодействия с торговой

системой, либо торговая система недоступна.

MTE_NOMEMORY -9 Недостаточно памяти для выполнения операции.

MTE_ZLIB -10 Ошибка при сжатии/распаковке передаваемых данных.

MTE_PKTINPROGRESS -11 Была вызвана функция MTEAddTable без последующего

вызова MTERefresh. Во время сборки пакета запросов на

обновление вызов других функций библиотеки невозможен.

MTE_PKTNOTSTARTED -12 Была вызвана функция MTERefresh без предварительного

вызова MTEAddTable. Сначала необходимо сформировать

пакет запросов на обновление.

MTE_FATALERROR -13 Непредвиденная критическая ошибка.

MTE_INVALIDHANDLE -14 Неверный дескриптор таблицы. Дескриптор не был получен

вызовом MTEOpenTable, либо таблица уже закрыта с помощью

MTECloseTable.

MTE_DSROFF -15 Связь по последовательному порту нарушена (отсутствует

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

36

сигнал DSR). Возможно нарушена целостность

последовательного кабеля, либо последовательный порт закрыт

на одной из сторон соединения. Применимо к устаревшим

версиям шлюза.

MTE_UNKNOWN -16 Во время выполнения функции произошла непредвиденная

ошибка.

MTE_BADPTR -17 Одной из функций MTExxxx() в качестве аргумента передан

недопустимый указатель.

MTE_TRANSREJECTED -18 Торговая система обработала запрос и вернула код ошибки.

Транзакция не выполнена.

MTE_TEUNAVAIL -19 Торговая система временно недоступна. Сервер продолжает

попытки подключения к ТС или находится в ожидании торговой

сессии.

MTE_NOTLOGGEDIN -20 Клиент пытается отправить запрос через сервер после того, как

тот установил новое подключение к Торговой системе.

Требуется заново подключить клиента к серверу.

MTE_WRONGVERSION -21 Сервер не поддерживает эту версию клиентской библиотеки.

MTE_LOGON -30 При соединении с сервером были указаны неверные

регистрационные параметры: USERID, PASSWORD и т.п.

MTE_TOOSLOWCONNECT -31 Слишком медленный канал связи не дает корректно завершить

процедуру коннекта/реконнекта.

MTE_CRYPTO_ERROR -32 Ошибка при шифровании/расшифровке, создании/проверке

ЭЦП.

MTE_THREAD_ERROR -33 Клиент пытается использовать одно соединение в двух потоках.

Например, пытается вызвать функцию MTExxxx() в то время,

как ещё не завершил работу предыдущий вызов MTExxxx().

MTE_NOTIMPLEMENTED -34 Вызываемая функция отсутствует в данной версии клиентской

библиотеки.

MTE_ABANDONED -35 Возвращается функцией MTEDisconnect (вызванной в другом

потоке), в случае если рабочий поток был остановлен с

помощью вызова TerminateThread.

MTE_BADINTERFACE -36 Возвращается функциями MTEConnect/MTEConnectEx в

случае ошибки при загрузке интерфейса Торговой системы

(например, версия шлюза устарела и не поддерживает текущий

формат).

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

37

ПРИЛОЖЕНИЕ 1. ФОРМАТ БУФЕРА ДЛЯ ФУНКЦИЙ MTESTRUCTURE,
MTESTRUCTURE2 И MTESTRUCTUREEX

Поле Data структуры TMTEMsg/MTEMSG (описание структуры см. в разделе «Получение

описания информационных объектов»), указатель на которую возвращает функция

MTEStructure, имеет следующий формат (описание элементарных типов String, Integer и т.п. см.

прил. 4; в случае структуры, возвращаемой функцией MTEStructure, перед каждым полем типа

String передаётся 4 байта, содержащие длину этой строки). Поля и значения, передающиеся только

в функциях MTEStructure2 (аналогична вызову MTEStructureEx c Version=2) и

MTEStructureEx c Version>=2, помечены красным цветом:

 поле тип

TInterface:

ИмяИнтерфейса String

ЗаголовокИнтерфейса String

ОписаниеИнтерфейса String // только MTEStructureEx c Version>=2

НомерMsgSet String // только MTEStructureEx c Version>=4

ПеречислимыеТипы TEnumTypes

Таблицы TTables

Транзакции TTransactions

Описание информационных объектов состоит из трех блоков: описание перечислимых типов,

таблиц и транзакций.

TEnumTypes:

КолвоТипов Integer

Тип1 TEnumType

Тип2 TEnumType

...

ТипN TEnumType

TEnumType:

 Имя String

Заголовок String

Описание String // только MTEStructureEx c Version>=2

Размер Integer

Тип TEnumKind

КолвоКонстант Integer

Константа1 TEnumConst

Константа2 TEnumConst

...

КонстантаN TEnumConst

TEnumConst для MTEStructure:

 Строка string // в формате «Значение=ДлинноеОписание»

TEnumConst для MTEStructureEx c Version>=2:

 Значение string

 ДлинноеОписание string

КраткоеОписание string

TEnumKind: Integer

ekCheck = 0

ekGroup = 1

ekCombo = 2

Перечислимые типы используются для описания допустимых значений полей таблиц и

транзакций. Описание типа может выглядеть, например, так:
'TCurrency' // Имя

'Валюта' // Описание

4 // Размер

ekCombo // Предпочтительный вид представления - "Тип"

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

38

3 // Кол-во констант

'RUR =Рубли' // Константа 1

'USD =Доллары' // Константа 2

'EUR =Евро' // Константа 3

Поле "Размер" (=4) указывает размер допустимых значений для полей, имеющих данный тип.

Поле "Тип" (=ekCombo) задает предпочтительный способ представления поля, используемый при

создании формы ввода параметров. Например, поле с типом ekCombo может быть представлено в

виде списка значений. Возможные варианты показаны на следующем рисунке:

Для функции MTEStructure константы состоят из двух частей - допустимого значения (всегда

длиной "Размер") и описания этого значения, разделенных символом равенства (=).

Для функций MTEStructure2 и MTEStructureEx с Version>=2 значения констант и их

описания передаются в отдельных полях.

TTables:

КолвоТаблиц Integer

Таблица1 TTable

Таблица2 TTable

...

ТаблицаN TTable

TTable:

Имя String

Заголовок String

Описание String // только MTEStructureEx c Version>=2

ИндексСистемы Integer // только MTEStructureEx c Version>=2

Атрибуты TTableFlags

ВходныеПоля TFields

ВыходныеПоля TFields

TTableFlags: Integer

tfUpdateable = 1

tfClearOnUpdate = 2

tfOrderbook = 4 // только MTEStructureEx c Version>=2

Список входных полей таблицы используется при формировании строки параметров для функции

MTEOpenTable.

Список выходных параметров позволяет разбирать буферы, возвращаемые функциями

MTEOpenTable и MTERefresh.

Поле «ИндексСистемы» содержит номер подсистемы Торговой системы, которая обрабатывает

данный запрос. Пакет обновлений, формируемый вызовами MTEAddTable, может содержать

только запросы с одинаковым «ИндексомСистемы». В настоящее время на всех рынках, кроме

срочного, этот индекс равен 0, и все таблицы могут обновляться одним вызовом MTERefresh. На

срочном рынке работают две подсистемы: собственно торговая и система риск-менеджмента –

поэтому все запросы на обновление должны разбиваться на два пакета в соответствие с «Индексом

системы».

Атрибуты таблицы могут комбинироваться (то есть значение будет равно 3) и имеют следующие

значения:

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

39

tfUpdateable - таблица является обновляемой. Для нее можно вызывать функции

MTEAddTable/MTERefresh;

tfClearOnUpdate - старое содержимое таблицы должно удаляться при получении каждого

обновления с помощью функций MTEAddTable/MTERefresh.

tfClearOrderbook – таблица имеет формат котировок и должна обрабатываться соответсвующим

образом (см. Замечания по работе с таблицами).

TFields:

 КолвоПолей Integer

 Поле1 TField

 Поле2 TField

 ...

 ПолеN TField

TField:

Имя String

Заголовок String

Описание String // только MTEStructureEx c Version>=2

Размер Integer

Тип TFieldType

КолвоДесятичЗнаков Integer // только MTEStructureEx c Version>=2

Атрибуты TFieldFlags

ПеречислимыйТип String

ЗначениеПоУмолчанию String // только для входных полей

TFieldType: Integer

ftChar = 0

ftInteger = 1

ftFixed = 2

ftFloat = 3

ftDate = 4

ftTime = 5

ftFloatPoint = 6 // только MTEStructureEx c Version>=3

ftMemo = 7 // только MTEStructureEx с Version>=5

TFieldFlags: Integer

ffKey = 0x01

ffSecCode = 0x02

ffNotNull = 0x04

ffVarBlock = 0x08 // только MTEStructureEx c Version>=2

 Атрибуты поля (TFieldFlags) могут комбинироваться и имеют следующие значения:

ffKey Поле является ключевым. Строки таблицы с совпадающими значениями

ключевых полей должны объединяться в одну строку.

ffSecCode Поле содержит код финансового инструмента. Рекомендуется учитывать данный

флаг при автоматизации процедуры определения числа знаков после запятой в

числовых полях типа ftFloat.

ffNotNull Поле не может быть пустым.

ffVarBlock Поле входит в группу полей, которые могут повторяться несколько раз.

Примечание. В списке выходных полей таблицы, в отличие от входных, отсутствует поле

"ЗначениеПоУмолчанию".

"Размер" задает длину поля в символах.

"КолвоДесятичЗнаков" задает знаков после запятой для полей типа ftFixed.

"ПеречислимыйТип" может содержать имя перечислимого типа, к которому относится поле, или

пустую строку.

"Значение по умолчанию" может использоваться при создании формы ввода параметров.

Все поля представлены в текстовом виде в формате торговой системы (см. MTEExecTrans).

TTransactions:

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

40

КолвоТранзакций Integer

Транзакция1 TTransaction

Транзакция2 TTransaction

...

ТранзакцияN TTransaction

TTransaction:

Имя String

Заголовок String

Описание String // только MTEStructureEx c Version>=2

ИндексСистемы Integer // только MTEStructureEx c Version>=2

ВходныеПоля TFields

Список входных полей транзакции используется при формировании строки параметров для

функции MTEExecTrans.

ПРИЛОЖЕНИЕ 2. ФОРМАТ БУФЕРА ДЛЯ ФУНКЦИИ MTEOPENTABLE

Поле Data структуры TMTEMsg/MTEMSG (описание структуры см. в разделе «Получение

описания информационных объектов»), указатель на которую возвращает функция

MTEOpenTable, содержит строки запрошенной таблицы и имеет следующий формат (описание

элементарных типов String, Integer и т.п. см. прил. 4):

 поле тип

TMTETable:

Ref Integer

КолвоСтрок Integer

Строка1 TMTERow

Строка2 TMTERow

...

СтрокаN TMTERow

Поле "Ref" используется при запросе изменений сразу по нескольким таблицам с помощью

функций MTEAddTable/MTERefresh. Оно содержит значение, переданное в качестве третьего

параметра функции MTEAddTable(Idx, HTable, Ref). По значению этого поля можно определить,

какой таблице (дескриптор HTable) соответствует полученная структура TMTETable. В буфере,

возвращаемом MTEOpenTable, значение поля "Ref" не определено.

TMTERow:

КолвоПолей Byte

ДлинаДанных Integer

НомераПолей Byte[КолвоПолей]

ДанныеПолей Byte[ДлинаДанных]

Строки таблицы имеют переменную длину и могут содержать разное число полей.

Поле "КолвоПолей" содержит число полей таблицы, присутствующих в данной строке. Если

значение это поля равно 0, в строке присутствуют все поля таблицы (см. MTEStructure).

Поле "ДлинаДанных" содержит суммарный размер полей таблицы в данной строке.

Поле "НомераПолей" имеет переменную длину. Его размер равен значению поля "КолвоПолей".

Поле содержит номера полей (по одному байту на номер), присутствующих в данной строке.

Номер поля соответствует порядковому номеру выходного поля в описании информационных

объектов (см. MTEStructure). Если "КолвоПолей" равно 0, значит "НомераПолей" отсутствует, а

в качестве номеров полей следует брать последовательность номеров 0, 1, 2, 3 … N.

Поле "ДанныеПолей" (размером "ДлинаДанных" байт) содержит набор значения полей таблицы.

Количество полей определяются значением "КолвоПолей", а их суммарная длина -

"ДлинаДанных". Длина и тип каждого конкретного поля определяются в описании

информационных объектов (см. MTEStructure). Все поля представлены в текстовом виде в

формате торговой системы (см. приложение 5).

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

41

Пример:

Допустим в описании информационных объектов, полученном с помощью MTEStructure,

определена таблица "Сделки" со следующими выходными полями:

TRADES // "Сделки"

 TradeNum: ftInteger(12) // Номер сделки

 TradeTime: ftChar(6) // Время сделки

 BuySell: ftChar(1) // "B" - покупка, "S" - продажа

 SecBoard: ftChar(4) // код режима торгов

 SecCode: ftChar(12) // код инструмента

 Price: ftFloat(9) // цена

 Qty: ftInteger(10) // кол-во лотов

Вызвана функция:

MTEOpenTable(Idx, 'TRADES', '', True, Msg);

В результате в поле Msg.Data содержится следующая информация

{

 0x00000000, // Поле "Ref"

 0x00000002, // Получено 2 строки

 0x05, // В первой строке 5 полей

 0x0000002F, // Длина данных 47 байт

 #0#3#4#5#6, // Номера полей 0, 3, 4, 5, 6:

// это поля "TradeNum", "SecBoard", "SecCode", "Price", "Qty" из

описания

 '000000120567CETSUSD000000TOD0002579000000000037'

 // Значения полей: 120567, "CETS", "USD000000TOD", 25.79, 37

 0x03, // Во второй строке 3 поля

 0x16, // Длина данных 22 байта

 #1#3#4, // Номера полей 1, 3, 4:

// это поля "TradeTime", "SecBoard", "SecCode" из описания

 '102953CETSUSD000000TOM'

 // Значения полей: "10:29:53", "CETS", "USD000000TOM"

}

ПРИЛОЖЕНИЕ 3. ФОРМАТ БУФЕРА ДЛЯ ФУНКЦИИ MTEREFRESH

Поле Data структуры TMTEMsg/MTEMSG (описание структуры см. в разделе «Получение

описания информационных объектов»), указатель на которую возвращает функция

MTEOpenRefresh, содержит несколько таблиц торговой системы и имеет следующий формат

(описание элементарных типов String, Integer и т.п. см. прил. 4):

 поле тип

TMTETables:

КолвоТаблиц Integer

Таблица1 TMTETable

Таблица2 TMTETable

...

ТаблицаN TMTETable

Таким образом, буфер содержит несколько таблиц. Формат буфера таблицы описан в

приложении 2.

ПРИЛОЖЕНИЕ 4. ЭЛЕМЕНТАРНЫЕ ТИПЫ

Для представления элементарных типов в библиотеке MTESRL используются следующие

структуры:

Byte

Один байт.

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

42

Integer

Четыре байта в формате процессоров x86 (сначала наименее значащий байт).

String

Структура следующего вида:

ДлинаСтроки: Integer

ТекстСтроки: Byte[ДлинаСтроки]

Byte[N]

Массив байт длиной N.

ПРИЛОЖЕНИЕ 5. ФОРМАТИРОВАНИЕ ТАБЛИЧНЫХ ДАННЫХ,
ВОЗВРАЩАЕМЫХ ТОРГОВОЙ СИСТЕМОЙ

Возвращаемые торговой системой табличные данные, в зависимости от типа поля форматируются

следующим образом:

ftChar

Текстовая строка, дополненная справа пробелами до длины, указанной в описании поля.

ftInteger

Значения полей типа ftInteger (целые числа) передаются в текстовом представлении и

дополняются слева нулями до нужного размера.

ftFloat

 (в html описании структуры интерфейса – тип «PRICE»)

Значения полей типа ftFloat (вещественные числа) передаются в текстовом представлении

без десятичной точки. Количество знаков после десятичной точки в полях типа ftFloat для

конкретной ценной бумаги определяется значением поля "DECIMALS" таблицы

"SECURITIES".

В полях типа ftFloat обязательно должны присутствовать DECIMALS знаков после

запятой. Например, число 465,39 для ценной бумаги с DECIMALS = 4 должно быть

представлено как "4653900". Значение "46539" в этом случае будет воспринято торговой

системой как 4,6539.

ftFixed

В полях типа ftFixed значения (вещественные числа) также передаются в текстовом

представлении без десятичной точки. По умолчанию поля данного типа имеют два знака

после десятичной точки. Однако при использовании функции MTEStructure2 и

MTEStructureEx с Version>=2 (см. Приложение 1) в структуре передается точное число

десятичных знаков.

ftDate

Значения в полях типа ftDate передаются в виде текстовой строки YYYYMMDD.

ftTime

Значения в полях типа ftTime передаются в виде текстовой строки формата HHMMSS.

ftFloatPoint

(в html описании структуры интерфейса – тип «FLOAT»)

Значения полей типа ftFloatPoint (вещественные числа) передаются в текстовом

представлении с десятичной точкой и дополняются слева нулями до нужного размера.

Этот тип доступен при получении структуры информационных объектов с помощью

ASTS Connectivity (mtesrl) API Guide

© ПАО Московская Биржа, 2022

43

MTEStructureEx с Version>=3 (см. Приложение 1). При использовании функций

MTEStructure и MTEStructure2 тип передается как строка (ftChar). Положение

десятичной точки внутри числа не фиксировано. Десятичная точка, а также возможный

знак числа, учитываются при подсчете длины. Например, ftFloatPoint(9): "001.45712",

ftFloatPoint(16): "-0000012071000.5".

ftMemo

Текстовая строка произвольной длины. Этот тип доступен при получении структуры

информационных объектов с помощью MTEStructureEx с Version>=5 (см.

Приложение 1). При использовании функций MTEStructure и MTEStructure2 тип

передается как строка фиксированной длины (ftChar), а данные обрезаются до размера,

указанного в описании. Структура, состоящая из двух полей:

• MemoLen - длина строки в текстовом представлении, дополненная слева нулями

до размера поля, указанного в описании;

• Memo - последовательность символов, длиной MemoLen байт.

Например, ftMemo(6): "000015Hello, world!!!" кодирует строку длиной 15 байт

"Hello, world!!! ".

Примечание

В полях любого типа может быть передано пустое значение (NULL), для этого

используется строка пробелов нужной длины.

