
Moscow Exchange

Market Data Multicast
FIX/FAST Platform

User Guide

Moscow Exchange

Version 3.3.3

 September 29, 2014

Contents
1. Overview .. 5

1.1. Document History .. 5

1.2. Streaming Data ... 6

1.3. Incremental Messaging... 6

1.4. FIX Format ... 6

1.5. FAST Compression .. 6

1.6. Multicast Delivery .. 6

1.7. Recovery ... 7

2. Getting Started with MOEX Market Data FIX/FAST Multicast Platform .. 8

2.1. Basic Scenario – Connect before the Trade Day Started ... 8

2.2. Connect after the Trade Day Started .. 8

2.3. Incremental Feeds A and B Arbitration ... 8

3. Core Functionality.. 11

3.1. Platform Architecture ... 11

3.2. FAST Implementation .. 13

3.2.1 Introduction ... 14

3.2.2 Stop Bit Encoding ... 14

3.2.3 Implicit Tagging .. 14

3.2.4 Field Encoding Operators.. 15

3.2.5 FAST Template ... 15

3.2.6 Decoding overview ... 17

3.2.7 Sample Template ... 18

3.3. Data Feeds .. 20

3.3.1 Instruments Feed ... 21

3.3.2 OrderBook, Market Statistics, Orders, and Trades Feeds ... 21

3.3.3 Market Recovery Feeds ... 23

3.3.4 TCP Replay ... 23

3.4. Recovery ... 24

3.4.1 Market Recovery Overview .. 25

3.4.2 Recovering Data – Process .. 25

3.4.3 TCP Replay ... 27

4. FIX Message Specification .. 28

4.1. FIX Component Blocks .. 28

4.1.1 Standard Message Header ... 28

4.1.2 Instrument.. 29

4.1.3 Instrument Extension... 30

4.1.4 Market Segment .. 31

4.2. FIX Session-Level Messages ... 32

4.2.1 Logon (A) .. 32

4.2.2 Logout (5) .. 33

4.2.3 Heartbeat (0) .. 33

4.3. FIX Application-Level Messages .. 33

4.3.1 Security Definition (d) ... 33

4.3.2 Security Status (f) .. 34

4.3.3 Trading Session Status (h) ... 36

4.3.4 Market Data Request (V) ... 36

4.3.5 Market Data - Snapshot/Full Refresh (W) ... 36

4.3.6 Market Data - Incremental Refresh (X) ... 43

5. Network Connectivity Guide ... 50

5.1. Configure a VPN connection with MOEX using Windows XP .. 50

5.2. Configure a VPN connection with MOEX using Windows 7.. 63

5.3. Configure a VPN connection with MOEX using OpenSUSE ... 73

5.4. Troubleshooting.. 77

6. Certified Tools ... 82

6.1. EPAM – B2Bits ® FIX Antenna TM Library .. 82

6.1.1 Quick Start – Code Samples.. 83

6.1.2 API Overview .. 87

1. Overview

This document describes the Moscow Exchange (identified as MOEX below) MOEX Market Data Multicast FIX/FAST Platform. This

platform provides the new highly efficient mechanism for delivering MOEX Market Data to market data consumers. The mechanism utilizes the FIX

protocol for messages structure and syntax, FAST protocol for optimization of data streaming, and UDP protocol for delivering data to multiple users

efficiently.

MOEX Market Data Multicast FIX/FAST Platform includes the following aspects: streaming data, incremental messaging, FIX format, FAST

compression, multicast delivery, and recovery.

1.1. Document History

Issue Date Description

1.0 May 25, 2011 Original version of this document

2.0 December 12, 2012 Clarifications added

3.3 April 08, 2013 Negotiated and REPO deals – specific fields added

Message format changes to separate SECBOARD, Trading Status, and Trading Period in

individual tags.

Additional fields to support REPO with CCP, Closing Auctions, Discrete Auctions, Dark

pool auctions, T+2 trading data

New FAST compression template

Improved readability and fixing document’s errata

3.3.1 May 24, 2013 Fixing document errors and adding clarifications per users’ feedback. Removing unused

fields from document.

Compression template has been corrected.

Document has revision marks ON to highlight changes.

3.3.2 September 04, 2013 Updated specifications for units (lots or securities) that are used in trading volumes (271)

3.3.3 March 26, 2014 Added field, due to changes in the Listing Rules.

 September 29, 2014 Fixed inaccuracies, removed unused fields and values.

1.2. Streaming Data

Streaming data is the model which allows one to compose a continuous sequence of information of determinate length into one message. It is

promote to decrease latency and provide very high volume data routing.

1.3. Incremental Messaging

Incremental data model clearly provides less wasteful on resources. Minimum numbers of instructions are needed to update the book: add,

change, delete. An incremental approach sends only necessary data of market events and is intended to significantly reduce data content.

1.4. FIX Format

MOEX Market Data Multicast FIX/FAST Platform uses FIX message format for messages structure and syntax. Message fields are delimited

using the ASCII 01 <SOH> character. They are composed of a header, a body, and a trailer.

For more information about used messages and tags, see section 4. FIX Message Specification .

1.5. FAST Compression

FAST is a binary compression algorithm used to purpose of the optimization of FIX messages. FAST benefits include reduced bandwidth and

reduced latency. They are achieved at the expense of increased processing time and more complex processing algorithms.

The FAST Protocol uses the following approaches to compact data messages:

- implicit tagging;

- field encoding;

- presence map;

- stop bit;

- binary encoding.

These approaches assume that the structures of the transferred messages as well as encoding rules are agreed between the counter parties. This

is usually done via the exchange of machine readable XML-based FAST templates.

For more information about FAST Implementation in MOEX Market Data Multicast, see section 3.2. FAST Implementation.

1.6. Multicast Delivery

Messages are disseminated over the UDP protocol, which allows the Platform to transfer a single packet to multiple destinations and provides

lower than TCP transmission latency.

One FAST encoded FIX message does not occupy more than one UDP packet. This ensures the feed is optimized for bandwidth efficiency by

reducing the impact of multiple network headers and provides support for FAST field encoding to utilize the full suite of operators including Increment

and Copy. These operators will only be used across a set of messages within a single packet.

Currently MOEX Market Data Multicast FIX/FAST Platform does not send more than one FAST encoded FIX message in a UDP packet, but

such possibility can be added in future releases.

To minimize confusion MOEX Market Data Multicast FIX/FAST Platform sends messages from different tables of the Trading System to

different multicast groups.

1.7. Recovery

Rapid recovery is increasingly important as clients must be always in the market. Recovery processes are very useful for recipients to minimize

the probability of a data loss.

MOEX Market Data Multicast FIX/FAST Platform provides data recovery in two ways:

 Market data recovery using market snapshots – suitable for the recovery of a large-scale data loss (i.e. late joiner or major outage);

 TCP Replay of the sent messages – suitable for the recovery of a small-scale data loss (in case when some messages are lost during the transfer).

2. Getting Started with MOEX Market Data FIX/FAST Multicast Platform

2.1. Basic Scenario – Connect before the Trade Day Started

In general, clients should start listening to MOEX Market Data Multicast FIX/FAST Platform some time before the trading day starts. This

ensures that client will start receiving actual market data without performing any recovery process.

The procedure is the following:

1. Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML-file describing the connectivity parameters

(feeds multicast addresses, ports, etc.).

2. Download the FAST template from ftp. See section 3.2.5 for the description of the FAST template.

3. Start listening Incremental Feed(s) and sequentially apply received data.

2.2. Connect after the Trade Day Started

If client starts listening to MOEX Market Data Multicast FIX/FAST Platform sometime after the trading day started, it should keep the

following procedure:

1. Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML-file describing the connectivity parameters

(feeds multicast addresses, ports, etc.).

2. Download the FAST template from ftp. See section 3.2.5 for the description of the FAST template.

3. Start listening Incremental Feed(s) and queue received data.

4. Start listening Recovery Feed(s), receive and apply actual market data snapshot.

5. Stop listening Recovery Feed(s).

6. Apply queued incremental data.

7. Continue receiving and normal processing incremental data.

2.3. Incremental Feeds A and B Arbitration

Data in all UDP Feeds are disseminated in two identical feeds (A and B) on two different multicast IPs. It is strongly recommended that client

receive and process both feeds because of possible UDP packet loss. Processing two identical feeds allows one to statistically decrease the probability

of packet loss.

It is not specified in what particular feed (A or B) the message appears for the first time. To arbitrate these feeds one should use the message

sequence number found in Preamble or in tag 34-MsgSeqNum. Utilization of the Preamble allows one to determine message sequence number without

decoding of FAST message.

Processing messages from feeds A and B should be performed using the following algorithm:

1. Listen feeds A and B

2. Process messages according to their sequence numbers.

3. Ignore a message if one with the same sequence number was already processed before.

4. If the gap in sequence number appears, this indicates packet loss in both feeds (A and B). Client should initiate one of the Recovery process. But

first of all client should wait a reasonable time, perhaps the lost packet will come a bit later due to packet reordering. UDP protocol can’t guarantee

the delivery of packets in a sequence.

Example:

Feed A Feed B

34-MsgSeqNum = 59 34-MsgSeqNum = 59

34-MsgSeqNum = 60 34-MsgSeqNum = 60

34-MsgSeqNum = 62 34-MsgSeqNum = 61

34-MsgSeqNum = 63 34-MsgSeqNum = 62

34-MsgSeqNum = 65 34-MsgSeqNum = 65

Messages are received from Feed A and Feed B.

1. Receive message # 59 from Feed A, process it.

2. Receive message #59 from Feed B, discard it, because this message was processed before from Feed A.

3. Receive message # 60 from Feed A, process it.

4. Receive message #60 from Feed B, discard it, because this message was processed before from Feed A.

5. Receive message #62 from Feed A, discard it and wait for message #61.

6. Receive message # 61 from Feed B, process it.

7. Receive message # 62 from Feed B, process it.

8. Receive message #62 from Feed A, discard it, because this message was processed before from Feed B.

9. Receive message # 63 from Feed A, process it.

10. Receive message #65 from Feed A, discard it and wait for message #64.

11. Receive message #65 from Feed B, discard it and wait for message #64.

12. Begin recovery process, because gap is detected. Message #64 is missed.

3. Core Functionality

3.1. Platform Architecture

UDP channels used to transfer market data from MOEX. UDP channels are also used for recovery process, TCP connection is used to replay

sets of lost messages, already published in the one of UDP Channels.

Following feeds are used in the system:

1. Basic:

1.1. Market Data Incremental Refresh feeds.

1.2. Instrument Definition feed.

2. Recovery:

2.1. Market Recovery feed.

2.2. TCP Replay session.

MOEX Market Data Multicast broadcast feeds:

 Basic Feeds:

o Aggregated OrderBook Feeds (OBR), 20 best price levels for buy and for sell

 OrderBook Feed A

 OrderBook Feed B

o Market Statistics Feeds (MSR)

 Statistics Feed A

 Statistics Feed B

o Active Orders List Feeds (OLR)

 Orders Feed A

 Orders Feed B

o Trades List Feeds (TLR)

 Trades Feed A

 Trades Feed B

 Recovery Feeds:

o Aggregated OrderBook Recovery Snapshot Feeds (OBS)

 OrderBook Recovery Feed A

 OrderBook Recovery Feed B

o Market Statistics Recovery Snapshots Feeds (MSS)

 Statistics Recovery Feed A

 Statistics Recovery Feed B

o Active Orders List Recovery Snapshots Feeds (OLS)

 Orders Recovery Feed A

 Orders Recovery Feed B

o Trades List Recovery Snapshot Feeds (TLS)

 Trades Recovery Feed A

 Trades Recovery Feed B

 Instruments Definitions Feeds (IDF):

o Instruments Definitions Feed A

o Instruments Definitions Feed B

Besides publishing market data in UDP channels, MOEX Market Data Multicast FIX/FAST Platform can accept TCP requests from clients.

The replay of data from the following feeds can be requested over TCP connection:

o OrderBook Feed (OBR)

o Statistics Feed (MSR)

o Orders Feed (OLR)

o Trades Feed (TLR)

There are some restrictions for market data transfer over TCP connection:

1. market data messages may be available for limited original publishing time interval back from the time of request;

2. the number of messages, which can be requested over the one TCP session, is limited by 500 messages per request;

3. the number of messages, which can be requested through TCP-replay during the trading day, may be limited.

3.2. FAST Implementation

This part contains the description of the implementation FIX Adapted for STreaming (FAST) protocol.

3.2.1 Introduction

The FIX Adapted for STreaming (FAST) Protocol has been developed as part of the FIX Market Data Optimization Working Group. FAST is

designed to optimize electronic exchange of financial data, particularly for high volume, low latency data dissemination.

FAST is a data compression algorithm that significantly reduces bandwidth requirements and latency between sender and receiver. FAST works

especially well at improving performance during periods of peak message rates. FAST extends the base FIX specification and assumes the use of FIX

message formats and data structures. FAST is a standalone specification that uses templates to encode an instance of an application type, or part

thereof, as a stream of bytes, and to inform the receiver which operations to use in decoding.

MOEX Market Data Multicast Platform distributes FIX messages which are encoded in FAST. The Preamble is found before the FAST

encoded message, and contains the sequence number (Fig 1).

Figure 1

3.2.2 Stop Bit Encoding
 An important property of the FAST transfer encoding is the use of stop bit encoded entities. In FAST, a stop bit is used instead of FIX’s

traditional <SOH> separator byte. Thus 7 bits of each byte are used to transmit data and the eighth bit is used to indicate the end of a field.

3.2.3 Implicit Tagging
 In traditional FIX messages each field takes the form “Tag=Value<SOH>” where the tag is a number representing which field is being

transmitted and the value is the actual data content. The ASCII <SOH> character is used as a byte delimiter to terminate the field. For example:

35=x|268=3 (message header)

279=0|269=2|270=9462.50|271=5|48=800123|22=8 (trade)

279=0|269=0|270=9462.00|271=175|1023=1|48=800123|22=8|346=15 (new bid 1)

279=0|269=0|270=9461.50|271=133|1023=2|48=800123|22=8|346=12 (new bid 2)

FAST eliminates redundancy with a template that describes the message structure. This technique is known as implicit tagging as the FIX tags

become implicit in the data. A FAST template replaces the tag=value syntax with “implicit tagging” as follows:

• tag numbers are not present in the message but specified in the template

• fields in a message occur in the same sequence as tags in the template

• the template specifies an ordered set of fields with operators.

3.2.4 Field Encoding Operators
FAST functions as a state machine and must know which field values to keep in memory. FAST compares the current value of a field to the

prior value of that field and determines if the new value should be constant, default, copy, delta (integer or string), increment, or tail.

Some operators rely on a previous value. A dictionary is a cache in which previous values are maintained. All dictionary entries are reset to the

initial values specified after each UDP packet. Currently, MOEX sends one message per UDP packet. In this realization delta is not needed.

A field within a FAST template will generally have one of the Field Operators: Constant, Default, Copy, Delta, Increment.

A field within a FAST template will have one of the following Data Types: String, Signed Integer, Unsigned Integer, byte Vector, and Decimal.

3.2.5 FAST Template
 A FAST template corresponds to a FIX message type and uniquely identifies an ordered collection of fields. The template also includes syntax

indicating the type of field and transfer decoding to apply. A template is communicated between MOEX and client systems in XML syntax using the

FAST v1.1 Template Definition Schema maintained by FIX. The XML format is human- and machine-readable and can be used for authoring and

storing FAST templates. Session Control Protocol (SCP) will not be used.

A template consists of Field Instructions that define the fields contained in the message. Field Instructions specify the field name, tag number,

data type, field operator, and presence attribute that indicate if a field is optional or mandatory.

A sample market data template is shown below (Fig. 2). The syntax is standard XML and can be parsed using a variety of open source tools.

Valid template syntax is determined by the FAST Template Schema which is available in the FAST v1.1 specification.

Figure 2

3.2.6 Decoding overview
The FAST template contains the instructions to decode and reconstruct compressed message data into the FIX format and also supports

repeating groups (sequences) that allow a single message to convey multiple instructions (i.e. book update, trade, high/low, etc.).

 Decoding process include following steps:

Figure 3

 Transport.

Client System receives encoded FAST message.

 Transfer decoding.

Transfer decoding is the initial step that converts data from the FAST 7-bit binary format. It includes:

 Identify template;

 Extract binary encoded bits;

 Map bits to fields per template.

 Field decoding.

Field decoding is the second part of the decompression process that reconstructs data values according to template-specified operations.

Field decoding operations are assigned per field within the template; decoding reinstates data as indicated by the template.

 Build FIX message.

It includes:

 Decoding begins with the identification of the Pmap bit for each field.

 The encoded FAST 7-bit binary values are obtained.

 Then the encoded FAST 7-bit binary values are de-serialized based on the data type specified in the template.

 The decoder maintains the state of prior values for each field throughout decoding and applies them for fields having operators of Delta,

Copy, or Increment.

 Obtain fully decoded values.

 Process FIX message.

3.2.7 Sample Template
Table 1

LLi

ne #
Template Syntax Use and Description

1 <template name="X" id="6"

xmlns="http://www.fixprotocol.org/ns/fast/td/1.1">

Provides the template name and template identifier.

2 <string name="MessageType" id="35">

 <constant value="X" />

</string>

Field instruction for MessageType defined as a string with identifier = 35

corresponding to the FIX tag number. MessageType has a constant field operator with

a value of X which indicates the FIX message type—in this case Market Data

Incremental Refresh.

3 <string name="ApplVerID" id="1128"><copy/></string> Field instruction for ApplVerID defined as a string with an identifier = 1128

corresponding to the FIX tag number. ApplVerID has a copy field operator.

4 <string name="SenderCompID" id="49"><copy/></string> Field instruction for SenderCompID defined as a string with identifier = 49

corresponding to the FIX tag number. SenderCompID has a copy field operator.

5 <uInt32 name="MsgSeqNum" id="34"><increment/></uInt32> Field instruction for MsgSeqNum defined as an unsigned integer with identifier = 34

corresponding to the FIX tag number. MsgSeqNum has an increment field operator.

6 <uInt64 name="SendingTime" id="52"><copy/></uInt64> Field instruction for SendingTime defined as an unsigned integer and with identifier =

52 corresponding to the FIX tag number. SendingTime has a copy field operator.

7 <byteVector name="MessageEncoding" Field instruction for MessageEncoding defined as a byte vector and with identifier =

id="347"presence="optional"><default/></byteVector> 347 corresponding to the FIX tag number. MessageEncoding has a default field

operator.

8 <sequence name="GroupMDEntries">

<length name="NoMDEntries" id="268"/>

Sequence instruction demarks the beginning of the MDEntries repeating group. The

sequence includes a length field called ‘NoMDEntries’ that specifies the number of

repeating groups present in the message.

9 <uInt32 name="MDUpdateAction" id="279"

presence="optional"><copy/></uInt32>

Field instruction for MDUpdateAction defined as an unsigned integer and identifier =

279 corresponding to the FIX tag number. MDUpdateAction has a copy field

operator.

10 <string name="MDEntryType" id="269"

presence="optional"><copy/></string>

Field instruction for MDEntryType which is defined as a string and has an identifier =

269 which corresponds to the FIX tag number. MDEntryType has a copy field

operator.

11 <byteVector name="MDEntryID" id="278"

presence="optional"><copy/></byteVector>

Field instruction for MDEntryID which is defined as a byte vector and has an

identifier = 278 which corresponds to the FIX tag number. MDEntryID has a copy

field operator.

12 <byteVector name="Symbol" id="55"

presence="optional"><copy/></byteVector>

Field instruction for Symbol which is defined as a byte vector and has an identifier =

55 which corresponds to the FIX tag number. Symbol has a copy field operator.

13 <int32 name="RptSeq" id="83" presence="optional"><copy/></int32> Field instruction for RptSeq defined as a signed integer with identifier = 83

corresponding to the FIX tag number. RptSeq has a copy field operator.

14 <decimal name="MDEntryPx" id="270"

presence="optional"><copy/></decimal>

Field instruction for MDEntryPx defined as a decimal with identifier = 270

corresponding to the FIX tag number. MDEntryPx has a copy field operator.

15 <decimal name="MDEntrySize" id="271"

presence="optional"><copy/></decimal>

Field instruction for MDEntrySize defined as a decimal with identifier = 271

corresponding to the FIX tag number. MDEntrySize has a copy field operator.

16 <uInt32 name="MDEntryDate" id="272"

presence="optional"><copy/></uInt32>

Field instruction for MDEntryDate defined as an unsigned integer and identifier = 272

corresponding to the FIX tag number. MDEntryDate has a copy field operator.

17 <uInt32 name="MDEntryTime" id="273"

presence="optional"><copy/></uInt32>

Field instruction for MDEntryTime defined as an unsigned integer and identifier = 273

corresponding to the FIX tag number. MDEntryTime has a copy field operator.

18 <byteVector name="TradingSessionID"

id="336"presence="optional"><copy/></byteVector>

Field instruction for TradingSessionID which is defined as a byte vector and has an

identifier = 336 which corresponds to the FIX tag number. TradingSessionID has a

copy field operator.

19 <byteVector name="QuoteCondition" id="276"

presence="optional"><copy/></byteVector>

Field instruction for QuoteCondition which is defined as a byte vector and has an

identifier = 276 which corresponds to the FIX tag number. QuoteCondition has a copy

field operator.

20 <byteVector name="TradeCondition" id="277"

presence="optional"><copy/></byteVector>

Field instruction for TradeCondition which is defined as a byte vector and has an

identifier = 277 which corresponds to the FIX tag number. TradeCondition has a copy

field operator.

21 <byteVector name="OpenCloseSettlFlag"

id="286"presence="optional"><copy/></byteVector>

Field instruction for OpenCloseSettlFlag which is defined as a byte vector and has an

identifier = 286 which corresponds to the FIX tag number. OpenCloseSettlFlag has a

copy field operator.

22 decimal name="NetChgPrevDay" id="451"

presence="optional"><copy/></decimal>

Field instruction for NetChgPrevDay defined as a decimal with identifier = 451

corresponding to the FIX tag number. NetChgPrevDay has a copy field operator.

23 <decimal name="AccruedInterestAmt"

id="5384"presence="optional"><copy/></decimal>

Field instruction for AccruedInterestAmt defined as a decimal with identifier = 5384

corresponding to the FIX custom tag number. AccruedInterestAmt has a copy field

operator.

24 <decimal name="ChgFromWAPrice" id="5510"

presence="optional"><copy/></decimal>

Field instruction for ChgFromWAPrice defined as a decimal with identifier = 5510

corresponding to the FIX custom tag number. ChgFromWAPrice has a copy field

operator.

25 <int32 name="TotalNumOfTrades" id="6139"

presence="optional"><copy/></int32>

Field instruction for TotalNumOfTrades defined as a signed integer with identifier =

6139 corresponding to the FIX custom tag number. TotalNumOfTrades has a copy

field operator.

26 <decimal name="TradeValue" id="6143"

presence="optional"><copy/></decimal>

Field instruction for TradeValue defined as a decimal with identifier = 6143

corresponding to the FIX custom tag number. TradeValue has a copy field operator.

27 <decimal name="Yield" id="236" presence="optional"><copy/></decimal> Field instruction for Yield defined as a decimal with identifier = 236 corresponding to

the FIX tag number. Yield has a copy field operator.

28 <int32 name="OfferNbOr" id="9168"

presence="optional"><copy/></int32>

Field instruction for OfferNbOr defined as a signed integer with identifier = 9168

corresponding to the FIX custom tag number. OfferNbOr has a copy field operator.

29 <int32 name="BidNbOr" id="9169" presence="optional"><copy/></int32> Field instruction for BidNbOr defined as a signed integer with identifier = 9169

corresponding to the FIX custom tag number. BidNbOr has a copy field operator.

30 <string name="OrderSide" id="10504"

presence="optional"><copy/></string>

Field instruction for OrderSide defined as a string with an identifier = 10504.

OrderSide has a copy field operator.

31 <string name="OrderStatus" id="10505"

presence="optional"><copy/></string>

Field instruction for OrderStatus defined as a string with an identifier = 10505.

OrderStatus has a copy field operator.

32 <decimal name="MinCurrPx" id="10509"

presence="optional"><copy/></decimal>

Field instruction for MinCurrPx defined as a decimal with identifier = 10509.

MinCurrPx has a copy field operator.

33 <uInt32 name="MinCurrPxChgTime"

id="10510"presence="optional"><copy/></uInt32>

Field instruction for MinCurrPxChgTime defined as an unsigned integer and identifier

= 10510. MinCurrPxChgTime has a copy field operator.

3.3. Data Feeds

The use of incremental FIX market data messaging in combination with FAST compression produces highly optimized feeds which are

distributed in UDP channels. Each Feed is transferred over separate multicast-address. Feeds have the following structure:

o OrderBook Feeds

 OrderBook Feed A

 OrderBook Feed B

o Statistics Feeds

 Statistics Feed A

 Statistics Feed B

o Orders Feeds

 Orders Feed A

 Orders Feed B

o Trades Feeds

 Trades Feed A

 Trades Feed B

o Instruments Feeds

 Instruments Definitions Feed A

 Instruments Definitions Feed B

In Feeds A and B the equal market data information is sent. It provides low probability of packets loss, and reduce the need in recovery

processes.

3.3.1 Instruments Feed
Instruments Definitions Feed A/B provides the security main parameters in a Security Definition (d) message and changes to the definition

and/or identity of the security. In this feeds FIX messages encoded to FAST are sent repeatedly with fixed time interval. One FIX message contains

information about one security.

Message example:

8=FIXT.1.1|9=400|35=d|1128=9|34=1551|460=5|423=2|911=1572|49=MOEX|55=VRSBP|48=RU000A0DPG75|22=4|461=EPXXXX|167=PS|

107=Voronezh EnergoSbyt.Comp(pref)|15=RUB|120=RUB|5217=2-01-55029-

Е|5385=FOND|969=0.001|5508=0.4|7595=18716678|350=54|351="Воронеж.энергосб.комп" ОАО ап|5382=20|5383=ВоронЭнСбп|52=20110503-

08:29:32.968|870=2|871=27|872=3|871=8|872=0|1310=1|561=1|1309=1|336=SMAL|10=000|

Note: each security symbol (55) may be traded in several trading boards that differ by rules. Tag 336 indicates <Board>. There may be multiple

different Board values for each security symbol. Please treat each combination of tags 55 and 336 in Security definition as a separate entity with

separate stream of market data updates.

3.3.2 OrderBook, Market Statistics, Orders, and Trades Feeds
The following market data is also distributed in separate feeds:

 OrderBook Feed A/B – changes in aggregated ORDERBOOK table.

There are three data blocks included in OrderBook feeds:

1. Add - to create/insert a new price at a specified price level (MDUpdateAction(279) =0);

2. Change - change quantity for a price at a specified price level (MDUpdateAction (279) = 1);

3. Delete - remove a price at a specified price level (MDUpdateAction (279) = 2).

All data blocks are issued for a specified entry type MDEntryType (269) = '0' (Bid), '1' (Offer), ‘J’ (Empty book).

 Statistics Feed A/B – market statistics, changes in SECURITIES table.

Statistics Feeds also include Add, Change, and Delete blocks. Entry types are:

'0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value);

'4' (Opening Price);

'5' (Closing Price);

'7' (Trading Session High Price);

'8' (Trading Session Low Price);

'9' (Trading Session VWAP Price);

‘A’ (Imbalance)

'B' (Trade Volume, expressed in number of securities);

'J' (Empty book);

'N' (Session high bid);

'O' (Session low offer);

'Q' (Auction Clearing Price);

‘W’(Closing auction price);

‘c’(Closing auction volume);

‘f’ (Volume of buy market orders in closing auction);

‘g’(Volume of sell market orders in closing auction);

'i' (Last bid price);

'j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

'l' (Market price 2); on FX market – FX fixing price as calculated between 11:59 and 12:00 Moscow time.

'm' (Market price); On FX market – FX fixing price

'o' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international FX fixing price

'r' (Official close price);

'v' (Total bid volume);

'w' (Total offer volume);

's' (Dark pool Auction price)

'x' (Dark Pool Auction volume)

‘y’ (Accrued coupon yield on the settlement date, in rubles per unit of financial instrument)

'u' (Duration);.

 Orders Feed A/B – changes in ORDERS table.

Orders Feeds also include Add, Change, and Delete blocks. Entry types are: '0' (Bid), '1' (Offer), ‘J’ (Empty book)

 Trades Feed A/B – changes in TRADES table.

Trades Feeds include only Add block (MDUpdateAction(279) =0) and custom entry type MDEntryType (269) = 'z' (Trade List).

The Market Data Incremental Refresh (MsgType (35) = X) message encoded to FAST is used for market data transfer. These allows one to

update applicable parts of information as necessary, as opposed to refreshing all market data each time there is an update.

Trading Session Status (h) message is used to represent connection status with appropriate MOEX market. When status of connection changed

this message is sent into UDP channel. When status of a security is changed Security Status (f) message is sent into UDP channel.

3.3.3 Market Recovery Feeds
Each Market Recovery feed (OrderBook, Statistics, Orders, Trades) sends the Market Data Snapshot / Full Refresh (MsgType (35) = W)

messages encoded to FAST. One message contains information about one security. Information in Market Data Snapshot / Full Refresh message

includes status of the connection with market (TradSesStatus (340) tag) and changes in status of a security (MDSecurityTradingStatus (1682) tag).

Market Recovery feeds should be used for recovery purposes only. Once the client system has retrieved recovery data, it recommended to stop

listening to the Market Recovery feeds.

3.3.4 TCP Replay
The TCP replay component allows one to request a replay of a set of messages already published in the one of UDP Channels.

The request is submitted by FIX Market Data Request message (35=V) with range of sequence numbers and UDP Channel identifier.

When establishing TCP-session, client should send the FIX Logon message, always with sequence number 1. When requesting the lost data

client should specify the channel ID. Channel IDs can be found in MOEX Market Data Multicast FIX/FAST Platform configuration file available on

ftp. They are OLR (for Order List feed), OBR (for OrderBook feed), TLR (for Trade List feed), MSR (for Market Statistics feed).

The length of the message in TCP stream can be found in 4-bytes number before each message being transmitted:

Client can request the limited number of messages. Current limitation is maximum 500 message per request.

Request is sent through a new TCP connection initiated by client. The responses are sent by MOEX Market Data Multicast FIX/FAST through

this same connection and the connection is then closed by MOEX Market Data Multicast FIX/FAST once the replay is complete.

TCP Replay should only be used if other options are unavailable. This method has low performance.

3.4. Recovery

MOEX Market Data Multicast FIX/FAST Platform disseminates Market Data in all feeds over two UDP subfeeds: Feed A and Feed B. In

Feeds A and B the identical messages are sent. It lowers the probability of packets loss and provides the first level of protection against missed

messages.

Sometimes, messages may be missed on both feeds, requiring a recovery process to take place. Message loss can be detected using the FIX

message sequence numbers (tag MsgSeqNum (34)), which are also found in the Preamble. The message sequence number is an incrementing number;

therefore, if a gap is detected between messages in the tag MsgSeqNum (34) value, or the Preamble sequence number, this indicates a message has

been missed. In addition, tag RptSeq (83) can be used to detect a gap between the messages at the instrument level. In this case client system should

assume that market data maintained in it is no longer correct and should be synchronized to the latest state using one of the recovery mechanisms.

MOEX Market Data Multicast FIX/FAST Platform offers several options for recovering missed messages and synchronizing client system to

the latest state. Market Recovery process together with Instruments Replay Feed is the recommended mechanism for recovery. TCP Replay provides

less performance mechanism recommended only for emergency recovering of small amount of lost messages when other mechanisms cannot be used

for some reason. Instrument level sequencing and natural refresh can be utilized to supplement the recovery process.

Notes:

 We strongly recommend that client systems process both the A and B Incremental UDP feeds. UDP Feed A and UDP Feed B provide the first

level of protection against missed messages.

 We recommend Market Recovery as a primary recovery option.

3.4.1 Market Recovery Overview
This recovery method is preferable to use for large-scale data recovery and for late joiners. Recovery feeds contains Market Data -

Snapshot/Full Refresh (W) messages. The sequence number (LastMsgSeqNumProcessed(369)) in the Market Data - Snapshot/Full Refresh (W)

message corresponds to the sequence number (MsgSeqNum(34)) of the last Market Data - Incremental Refresh (X) message in the corresponding feed.

Instrument level sequence number (RptSeq(83)) in Market Data - Snapshot/Full Refresh (W) message correspond to the sequence number

(RptSeq(83)) in the MDEntry from last Market Data - Incremental Refresh (X) message. Thus tag MsgSeqNum(34) shows the gap at the messages

level, tag RptSeq(83) shows gap at the instrument level.

After value of RptSeq(83) tag from Market Data - Incremental Refresh (X) becomes more than value of RptSeq(83) tag from Market Data -

Incremental Refresh (X), market data becomes actual.

After value of MsgSeqNum(34) from Market Data - Incremental Refresh (X) message becomes more than value of tag

LastMsgSeqNumProcessed(369) from Market Data - Snapshot/Full Refresh (W) message, market data becomes actual.

Messages sequence numbers begins from #1 in Market Data - Snapshot/Full Refresh (W) messages in each cycle.

Last Market Data - Snapshot/Full Refresh (W) message in Recovery Feeds sends with tag LastFragment (893) =’Y’.

Clients should keep queuing real-time data until all missed data is recovered. The recovered data should then be applied prior to data queued.

Steps during Recovery process corresponds to the steps 4 – 7 from point 2.2.

Since clients have retrieved recovery data, it is recommended to stop listening Market Recovery feeds.

3.4.2 Recovering Data – Process
The recovering data process should be applied to affected feeds only. Unaffected feeds can be processed as usual. The process can follow two

paths: queuing current data while recovering or processing current data while recovering.

3.4.2.1.1. Queuing
This process implies the queuing the Incremental Market Data from Incremental Feeds while receiving Market Data Snapshots from Recovery

Feeds. In order to avoid an excessive number of queued messages, it is recommended to process snapshots and apply the applicable incremental feed as

the snapshots arrive.

1. Identify Feed(s) in which the client system is out of sync.

2. Listen to and queue the Incremental Market Data from the affected Feed(s).

3. Listen to the Market Recovery Feed corresponding to the affected Incremental Feed(s), receive and apply snapshots.

4. Verify that all snapshots have been received for a given Market Recovery feed, using one of the following approaches:

a. Message sequence numbers in each loop of snapshots start from 1. So to determine the end of the loop one can wait until the next

message with 34-MsgSeqNum = 1 arrives.

b. Snapshots in the Recovery Feeds are sent in the same order as Security Definitions in Instruments Feed. Tag 893-LastFragment in

the W-message indicates if it is the last fragment of the snapshot on the instrument. Receiving the last fragment of the last

instrument means the receiving the last snapshot in the loop.

5. Apply all queued incremental data in the sequence, where

a. tag 34-MsgSeqNum (or the Preamble sequence number) is greater than the lowest value for tag 369-LastMsgSeqNumProcessed;

OR

b. tag 83-RptSeq from the Market Data Incremental – Refresh message is greater than the lowest value for tag 83-RptSeq on the

Market Recovery feed.

6. Continue normal processing

3.4.2.1.2. Concurrent Processing
This process implies the possibility to resume normal processing of an instrument while other affected instruments are still being recovered.

1. Identify Feed(s) in which the client system is out of sync.

2. Listen to the Incremental Market Data from the affected Feed(s) and optionally attempt a natural refresh.

3. Listen to the Market Recovery Feed corresponding to the affected Incremental Feed(s)

4. For each instrument:

a. compare tag 369-LastMsgSeqNumProcessed on the Market Recovery feed to tag 34-MsgSeqNum (or the Preamble sequence

number) on the Incremental Market Data feed and verify that the value for tag 34-MsgSeqNum is not lower;

OR

b. compare tag 83-RptSeq on the Market Recovery feed to tag 83-RptSeq on the Incremental Market Data feed and verify that the

value for tag 83-RptSeq on the Incremental Market Data feed is not lower.

5. Continue normal processing

3.4.2.1.3. Instrument Level Sequencing
Market Data Incremental Refresh messages contain instrument sequence numbers (tag 83-RptSeq), in addition to message sequence numbers

(tag 34-MsgSeqNum). Every repeating group instance of a market data entry contains an incrementing sequence number (tag 83-RptSeq) that is

associated with the instrument for which the data is present in the block.

Client systems can keep track of the instrument sequence number (tag 83-RptSeq) for every instrument by inspecting incoming data and

determining whether there is a gap in the instrument sequence number.

• If there is a gap in the instrument sequence number, it indicates that data was missed for the instrument when message loss occurred.

• If there is no gap, the data can be used immediately, and it also indicates that the book for this instrument still has a correct, current

state.

3.4.2.1.4. Natural Refresh
The client system must track the state of the book at all times with the FIX Market Data Incremental Refresh messages. It is possible, though

not guaranteed, that a set of these book update messages can be used to construct the current, correct state of a book without prior book state

knowledge. This process called Natural Refresh. Prior to beginning a natural refresh, the entire book should be emptied. Natural refresh assumes no

prior knowledge of book state. Natural Refresh works best for aggregated orderbook feed and for highly liquid securities.

3.4.3 TCP Replay
If market data from OrderBook, Statistics, Orders, and Trades Feeds was missed, it can be recovered over the TCP historical replay component

using the sequence number range. TCP Replay is a low performance recovery option and should only be used if other options are unavailable or for

small-scale data recovery. Number of messages which can be requested by client during TCP connection is limited.

TCP replay include follows:

1. Establish TCP connection with MOEX Market Data Multicast.

2. Send FIX message Logon(A) with sequence numder 1 to server. After successful authorization server sends the FAST-encoded Logon(A)

message.

3. Send Market Data Request (V) message with:

a. Tag ApplID (1180) - the channel ID (as specified in server configuration file available on ftp: OLR, OBR, TLR, or MSR).

b. Range of sequence numbers - ApplBegSeqNum(1182) and ApplEndSeqNum (1183) tags.

If request is correct, server sends FAST messages according to requested sequence numbers.

If request is incorrect, server sends FAST Logout (5) message with reject reason.

After server responses, the connection is closed.

Server will process only first user request, second and others will be ignored. If the server does not receive Market Data Request within an

established timeout interval after logon, the connection is closed.

4. FIX Message Specification

This part contains the description of FIX 5.0 SP2 protocol messages, component blocks and fields which are supported by MOEX Market Data

Multicast.

This specification is based on FIX 5.0 SP2 standard for application-level messages, FIXT 1.1 for session-level messages (http://fixprotocol.org/)

and adapted to MOEX’s purposes. It’s assumed that users have basic knowledge about FIX standard.

Only messages, component blocks and fields which are described in this document are supported by MOEX Market Data Multicast. Note that

all fields which are required or conditionally required by FIX 5.0 SP2 standard but absent in MOEX Interface specification are optional and will be

ignored by MOEX. All field values which are valid according to FIX 5.0 SP2 standard but aren’t described in this document will be considered as

invalid and incoming messages with such values will be rejected.

4.1. FIX Component Blocks

4.1.1 Standard Message Header
Table 2

T
a

g

Field name

R
eq

'd

Type Valid values Comments

1128 AppVerID Y String (1) ‘9’ (FIX50SP2) Specifies the service pack release being applied for application-level messages.

35 MsgType Y String (10) Defines message type.

Always unencrypted.

49 SenderCompID Y String (12) Assigned value used to identify firm sending message.

Always unencrypted.

If this message is sent to MOEX TCP replay server, SenderCompID may contain

arbitrary string.

34 MsgSeqNum Y SeqNum Integer message sequence number.

52 SendingTime Y UTCTimestamp Time of message transmission (expressed in UTC).

YYYYMMDD-HH:MM:SS.sss

347 MessageEncoding N String(11) 'UTF-8' (Unicode) Type of message encoding (non-ASCII characters).

http://fixprotocol.org/

Required if any "Encoding" fields are used.

4.1.2 Instrument
Table 3

T
a

g

Field name

R
eq

'd

Type Valid values Comments

55 Symbol Y String(12) Ticker symbol. The MOEX internal instrument identifier,

SecCode.

Note: an instrument with a given SecCode may be traded in

several trading boards (SecBoard). You should use each Symbol

(55)+TradingSessionID (336) combination as an individual

security with own order book and list of trades.

48 SecurityID N String Security identifier value of SecurityIDSource (22) type.

22 SecurityIDSource N String '4' (ISIN) Identifies class or source of the SecurityID (48) value.

460 Product N int '3' (CORPORATE);

'4' (CURRENCY);

'5' (EQUITY);

'6' (GOVERNMENT);

'7' (INDEX);

‘10’ (MORTGAGE)

'11' (MUNICIPAL);

‘12’ (OTHER);

'13' (FINANCING).

Indicates the type of product the security is associated with.

461 CFICode N String Indicates the type of security using ISO 10962 standard,

Classification of Financial Instruments (CFI code) values.

167 SecurityType N String 'CORP' (Corporate Bond);

'FOR' (Foreign Exchange Contract);

'CS' (Common Stock);

'PS' (Preferred Stock);

'EUSOV' (Euro Sovereigns);'

MLEG' (Multileg Instrument);

'MUNI' (Municipal bonds).

RDR – Russian depositary receipt

ETF – exchange traded fund

‘COFP’ (Certificate Of Participation)

Indicates type of security.

'XCN' (Extended Comm Note)

'STRUCT' (Structured Notes)

'WAR' (Warrant)

541 MaturityDate N LocalMktDate Maturity date for bonds

224 CouponPayment

Date

N LocalMktDate Date interest is to be paid.

223 CouponRate N Percentage The rate of interest.

107 SecurityDesc N String Security description.

350 EncodedSecurity

DescLen

N Length Byte length of encoded (non-ASCII characters)

EncodedSecurityDesc (351) field.

351 EncodedSecurity

Desc

N data Russian language (non-ASCII characters) name for the security.

Encoded format is specified via the MessageEncoding (347)

field. If used, the ASCII (English) representation should also be

specified in the SecurityDesc (107) field.

5217 StateSecurityID N String State Securities Identification Number.

5382 EncodedShortSec

urityDescLen

N Length Byte length of encoded (non-ASCII characters)

EncodedShortSecurityDesc (5383) field.

5383 EncodedShortSec

urityDesc

N data Short (non-ASCII characters) security name in Russian

language. Field encoding format specified via the

MessageEncoding (347) field.

5556 BaseSwapPx N Price Base SWAP price.

5558 BuyBackPx H Price Buy back price. Early redemption buyback price for bonds. If

defined, the field BuyBackDate must be filled. If defined, yield

calculation is based on this date and price.

5559 BuyBackDate H LocalMktDate Buy back date. Early redemption of bonds Buyback date. If

defined, yield calculation is based on this date.

4.1.3 Instrument Extension
Table 4

T
a

g

Field name

R
eq

'd

Type Valid values Comments

870 NoInstrAttrib N NumInGroup Number of repeating InstrAttribType (871) entries.

=> 871 InstrAttribType N int '8' (Coupon period);

'27' (Instrument Price Precision).

Code to represent the type of instrument attribute.

Required if NoInstrAttrib (870) > 0.

=> 872 InstrAttribValue N String Attribute value appropriate to the InstrAttribType (871) field.

4.1.4 Market Segment
Table 5

T
a

g

Field name

R
eq

'd

Type Valid values Comments

1310 NoMarketSegme

nts

N NumInGroup Number of Market Segments on which a security may trade.

=> 561 RoundLot N Qty The trading lot size of a security.

=> 1309 NoTradingSessio

nRules

N NumInGroup Allows trading rules to be expressed by trading session.

=> => 336 TradingSessionI

D

N String(4) Identifier for Trading Session. Used to represent SECBOARD.

Note: an instrument with a given SecCode may be traded in

several trading boards (SecBoard). You should use each Symbol

(55)+TradingSessionID (336) combination as an individual

security with own order book and list of trades.

=> => 625 TradingSessionS

ubID

N String NA – No trading

O – Opening auction period

C – Closing period

F – Final closing period

N – Normal trading period

L – Closing auction period

I – Discrete auction period

D – Dark pool auction period

E – Trading at the closing auction price period

Indicates the trading period

Notes:

 Period is empty before the trading start and after the

trading is closed.

 Switching between periods typically involves a short

stop in trading, in which period is not defined

(625=NA)

 The sequence and schedule of periods depends on board

code and on market conditions as defined by the

Exchange Trading rules.

 Period value of this component block indicates a period

that is running at the start of Security definition

publishing cycle. Security status updates that come after

Security definitions publishing cycle start should

replace tag 625 values from Security definitions feed.

=> => 326 SecurityTrading

Status

N int 18 – Not available for trading

118 – Opening auction

18 – Trading closed

103 – Closing period

Trading status for a security

Notes:

 a break in any period is indicated by 326=2 and period

2 – Break in trading

17 – Normal trading

102 – Closing auction

106 – Dark pool auction

107 – Discrete auction

120 – Trading at Closing auction price

identifier in tag 625.

 Not available for trading and Trading Closed are

different technological states in the Trading system.

However they both disable trading activity and thus

have equal values of tag 326.

 Trading status value of this component block indicates a

trading statsus that existed at the start of Security

definition publishing cycle. Security status updates that

come after Security definitions publishing cycle start

should replace tag 625 values from Security definitions

feed.

=>=>9680 OrderNote N Char Level of listing

4.2. FIX Session-Level Messages

4.2.1 Logon (A)
Logon message from customer to MOEX:

Table 6

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = 'A'

553 Username Y* String Userid or username.

554 Password Y* String User password.

1137 DefaultApplVerID Y String ‘9’ (FIX50SP2) Specifies the service pack release being applied, by default, to

message at the session level.

Logon message from MOEX to customer:
Table 7

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = 'A'

108 HeartBtInt Y int Heartbeat interval (seconds).

1137 DefaultApplVerID Y String ‘9’ (FIX50SP2) Specifies the service pack release being applied, by default, to

message at the session level.

4.2.2 Logout (5)
Table 8

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = '5'

58 Text N String Logout reason.

4.2.3 Heartbeat (0)
Table 9

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = '0'

4.3. FIX Application-Level Messages

4.3.1 Security Definition (d)
Table 10

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = 'd'

911 TotNumReports Y int Total number of Security Definition messages in a cycle.

component block

<Instrument>

Y The <Instrument> component block contains all the fields commonly used

to describe a security or instrument.

component block

<Instrument Extension>

N The <InstrumentExtension> component block identifies additional security

attributes that are more commonly found for Fixed Income securities.

15 Currency N Currency Identifies currency used for price.

component block <Market

Segment>

N Contains all the security details related to listing and trading the security,

including its trading status and trading period as they were at the start of

Security Definitions publishing cycle. This allows late joiners to get current

security trading state if they have missed earlier Security status (35=f)

messages.

120 SettlCurrency N Currency Currency code of settlement denomination.

423 PriceType N int '1' (Percentage);

'2' (Per unit).

Code to represent the price type.

Note: for REPO with CCP this tag value is 1, but indicates the REPO rate,

not the price of underlying security (bond or share)

64 SettlDate N* LocalMktDate Specific date of trade settlement (SettlementDate) in YYYYMMDD format

For Equities and FX in orders driven market: indicates settlement date

For Equities in quote driven market (negotiated): indicates default

settlement date. Actual date may vary and is indicated for each trade in the

Trade List feed

For FX swaps: indicates settlement date for reverse trade.

5385 MarketCode N String Code of market where instrument is traded.

 Note: MarketCode indicates a group of trading boards (SECBOARDS)

with similar trading rules.

969 MinPriceIncre

ment

N float Minimum price increase for a given exchange-traded Instrument.

5508 FaceValue N Amt Face value of security.

5850 OrigIssuueAmt N Int Number of placed securities in issue

7595 NoSharesIssued N Qty The number of shares issued.

4.3.2 Security Status (f)
Security Status messages indicate changes in current Trading status and period for a security. Please note that publishing multiple 35=f messages in traffic-shaped feeds

takes some time, and that this publishing is done in parallel with publishing updates in incremental feeds. Parallel publishing may result in getting an incremental update from new

trading state slightly before receiving the status change for a security, or getting an incremental update from previous trading state after the trading status change.
Table 11

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = 'f'

83 RptSeq Y int Sequence number of message within report series.

55 Symbol Y String Ticker symbol. The Moscow Exchange internal instrument identifier,

SecCode.

336

TradingSessionID N String Identifier for Trading Session. Used to represent SECBOARD.

Note: an instrument with a given SecCode may be traded in several

trading boards (SecBoard). You should use each Symbol

(55)+TradingSessionID (336) combination as an individual security

with own order book and list of trades.

625 TradingSessionSu

bID

N String NA – No trading

O – Opening auction period

C – Closing period

F – Final closing period

N – Normal trading period

L – Closing auction period

I – Discrete auction period

D – Dark pool auction period

E – Trading at the closing auction price

period

Indicates the trading period

Notes:

 Period is empty before the trading start and after the trading is

closed.

 Switching between periods typically involves a short stop in

trading, in which period is not defined (625=NA)

 The sequence and schedule of periods depends on board code

and on market conditions as defined by the Exchange Trading

rules.

326 SecurityTradingSt

atus

N int 18 – Not available for trading

118 – Opening auction

18 – Trading closed

103 – Closing period

2 – Break in trading

17 – Normal trading

102 – Closing auction

106 – Dark pool auction

107 – Discrete auction

120 – Trading at Closing auction price

Trading status for a security

Notes:

 a break in any period is indicated by 326=2 and period

identifier in tag 625.

 Not available for trading and Trading Closed are different

technological states in the Trading system. However they

both disable trading activity and thus have equal values of tag

326.

5509 AuctionIndicator N Boolean 'Y' (Yes);

'N' (No).

Indicates that the primary distribution auction is being held for the

security. Primary distribution auction data is currently not published in

the feed.

Notes:

 5509=N for ALL other auction types.

 Boolean values are encoded in FAST messages as binary

integers: 1 for Y, and 0 for N.

4.3.3 Trading Session Status (h)
Table 12

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = 'h'

336 TradingSessionID Y String Identifier for Trading Session is used to represent

SECBOARD.

340 TradSesStatus Y int ‘100’ (Connection to MOEX market established);

‘101’ (Lost connection to MOEX);

‘102’ (Connection to MOEX market established,

trading system wasn't restarted);

‘103’ (Connection to MOEX market established,

trading system was restarted).

State of the trading session. Informs about connection

state between the MOEX Market Data Multicast

FIX/FAST Platform and the trading system.

Note: Receiving the very unlikely message 340=103

means that Trading system has started from scratch and

you must remove all feed data on your side and start over.

58 Text N String Free format text string.

4.3.4 Market Data Request (V)
Table 13

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = 'V'

1180 ApplID N String OLR, OBR, TLR, MSR The channel ID.

1182 ApplBegSeqNu

m

N SeqNum Beginning range of application sequence numbers.

1183 ApplEndSeqNu

m

N SeqNum Ending range of application sequence numbers.

4.3.5 Market Data - Snapshot/Full Refresh (W)
Table 14

T
a

g

Field name

R
eq

'd

Type Valid values Comments

<Standard Message Header> Y MsgType = 'W'

83 RptSeq Y int Sequence number of message within report series. Value

equal to the RptSeq(83) in Market Data - Incremental

Refresh (X) message at the time when the snapshot has

been prepared.

369 LastMsgSeq

NumProcess

ed

N SeqNum Value equal to the MsgSeqNum(34) from the last Market

Data - Incremental Refresh (X) message which were

received and processed correctly.

340 TradSesStatu

s

N int ‘100’ (Connection to MOEX market established);

‘101’ (Lost connection to MOEX);

‘102’ (Connection to MOEX market established, trading

system wasn't restarted);

‘103’ (Connection to MOEX market established, trading

system was restarted).

State of the trading session. Informs about connection

state between the MOEX Market Data Multicast

FIX/FAST Platform and the trading system.

Note: Receiving the very unlikely message 340=103

means that Trading system has started from scratch and

you must remove all feed data on your side and start over.

55 Symbol Y String Ticker symbol. The MOEX internal instrument identifier,

SecCode.

Note: an instrument with a given SecCode may be traded

in several trading boards (SecBoard). You should use

each Symbol (55)+TradingSessionID (336) combination

as an individual security with own order book and list of

trades.

893 LastFragmen

t

N Boolean 'N' (Not Last Message);

'Y' (Last Message).

Indicates whether this message is the last in a sequence of

messages in the snapshot for a security.

Boolean values are encoded in FAST messages as binary

integers: 1 for Y, and 0 for N.

1682 MDSecurity

Trading

Status

N int 18 – Not available for trading

118 – Opening auction

18 – Trading closed

103 – Closing period

2 – Break in trading

17 – Normal trading

102 – Closing auction

Current trading status for a security

Notes:

 a break in any period is indicated by 1682=2

 Not available for trading and Trading Closed are

different technological states in the Trading

system. However they both disable trading

106 – Dark pool auction

107 – Discrete auction

120 – Trading at Closing auction price

activity and thus have equal values of tag 1682.

 Switching between trading periods typically

involves a short stop in trading

 The sequence and schedule of periods and

trading status values depends on SecBoard code

(336) and on market conditions as defined by

the Exchange Trading rules.

5509 AuctionIndic

ator

N Boolean 'Y' (Yes);

'N' (No).

Indicates that the primary distribution auction is being

held for the security. Primary distribution auction data is

currently not published in the feed.

Notes:

 5509=N for ALL other auction types.

Boolean values are encoded in FAST messages as binary

integers: 1 for Y, and 0 for N.

451 NetChgPrev

Day

N PriceOffset Net change from previous day’s closing price vs. last

traded price.

268 NoMDEntrie

s

Y NumInGroup Number of entries in Market Data message.

=> 269 MDEntryTyp

e

Y char '0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value);

'4' (Opening Price);

'5' (Closing Price);

'7' (Trading Session High Price);

'8' (Trading Session Low Price);

'9' (Trading Session VWAP Price);

‘A’ (Imbalance), expressed in number of securities

'B' (Trade Volume, expressed in number of securities);

'J' (Empty book);

'N' (Session high bid);

'O' (Session low offer);

'Q' (Auction Clearing Price), the clearing volume (271)

is expressed in lots;

‘W’(Closing auction price);

Type Market Data entry.

Notes:

 The availability of this field’s values depends on

market type (FX or Equities), SecBoard code

(336) and the Exchange trading rules.

 Different feeds have subsets of possible values,

depending on the data contents.

 Empty Book (269=J) indicates no data for a

security. Empty Book message may be generated

market-wide, which indicates that you should

remove all previously collected data and start

over.

 Meaning of some values depend on market type

(FX or Equities) and corresponding trading rules

 Off-book trading boards do not have data in

Orderbook Snapshot (OBS) and OrderList

snapshot feeds (OLS).

 Off-book trading boards may have market

statistics data for a Symbol taken from on-book

‘c’(Closing auction volume), expressed in number of

securities;

‘f’ (For MSR/MSS feeds - volume of buy market orders

in closing auction, expressed in number of securities; for

OLR/OLS – market in closing auction buy order);

‘g’(For MSR/MSS feeds: volume of sell market orders

in closing auction, expressed in number of securities; for

OLR/OLS – market in closing auction sell order);

'i' (Last bid price);

'j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

'l' (Market price 2); on FX market – FX fixing price as

calculated between 11:59 and 12:00 Moscow time.

'm' (Market price); On FX market – FX fixing price

'o' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international FX

fixing price

'r' (Official close price);

'v' (Total bid volume);

'w' (Total offer volume);

's' (Dark pool Auction price)
'x' (Dark Pool Auction volume), expressed in number of

securities

y’(Accrued coupon yield per the unit of security at

current date, expressed in rubles)

'u' (Duration);

'z' (Trade list).

trading boards for this Symbol (market, current,

WAP prices, etc.)

 The set of field values may be extended

following the Trading system updates. It is

recommended to allow in your code ignoring

unknown values of this field, and linked to such

entry values of other fields, until the new field

meaning can be supported by your application.

 Indexes are published in Market statistics (MSR

and MSS) channels.

 Preious trading day values are indicated by

additional tag 286

=> 278 MDEntryID N String Unique Market Data Entry identifier.

Notes:

 For trades (269=z) entries, contains a string with

Exchange trade number that is equal to trade

numbers in all trading interfaces

 For aggregated orderbook (OBS and OBR

channels) contains a unique string identifier of

price level

 For OrderList (OLR, OLS channels), contains a

string identifier of Add Order (279=0) update for

an order, NOT directly tied to the Exchange

Order number in trading interfaces.

=> 270 MDEntryPx C Price Price of the Market Data Entry.

Conditionnally required if MDEntryType (269) not in (

'A', 'B', 'C', 'J'). Conditionally required when

MDEntryType = "auction clearing price"

=> 271 MDEntrySiz

e

C Qty Quantity represented by the Market Data Entry.

Conditionally required if MDEntryType (269) in ('0', '1',

'2',’A’, 'B', 'C'). Conditionally required when

MDEntryType =’Q’ (auction clearing price),‘g’(Offer

volume market order in closing auction)

Note: For 269=B, this field value is expressed in number

of securities. For all other values of tag 269, this field

value is expressed in number of lots.

=> 272 MDEntryDat

e

N UTCDateOnly Date of Market Data Entry.

=> 273 MDEntryTi

me

N UTCTimeOnly Time of Market Data Entry.

=> 336 TradingSessi

onID

N String Identifier for Trading Session. Used to represent

SECBOARD.

Note: an instrument with a given SecCode may be traded

in several trading boards (SecBoard). You should use

each Symbol (55)+TradingSessionID (336) combination

as an individual security with own order book and list of

trades.

=>625 TradingSessi

onSubID

N String NA – No trading

O – Opening auction period

C – Closing period

F – Final closing period

N – Normal trading period

L – Closing auction period

I – Discrete auction period

D – Dark pool auction period

E – Trading at the closing auction price period

Indicates the trading period

For updates and snapshots, Period value indicates a period

for an event reported, not necessarily the currently

running period.

=> 276 QuoteConditi

on

N MultipleValueStri

ng

'C' (Exchange Best)

Space-delimited list of conditions describing a quote.

=> 277 TradeConditi N MultipleValueStri 'C' (Cash Trade (same day clearing)); Space-delimited list of conditions describing a trade.

on ng 'J' (Next Day Trade (next day clearing));

'R' (Opening Price) ;

'AJ' (Official Closing Price);

‘98’ (Minimum value);

‘99’ (Maximum value).

=> 286 OpenCloseSe

ttlFlag

N MultipleValueStri

ng

'4' (Entry from previous business day) Flag that identifies a market data entry.

=>40 OrdType H Char ‘1’(Market) Order type.

Used when MDEntryType (269) =’g’,’f’

Note: Market in Closing Auction orders are activated and

published in Order List feed in Closing Auction period.

Matching occurs at the end of closing auction.

Other market orders are not published in the feed because

they never stay active.

=> 236 Yield N Percentage Yield percentage.

=> 64 SettlDate N* LocalMktDate Specific date of trade settlement (SettlementDate) in

YYYYMMDD format

Notes:

For trades – settlement date of regular trade or negotiated

deal.

For REPO trades – settlement date of first part of REPO.

=> 44 Price N Price REPO rate for REPO trades.

=> 423 PriceType N int ‘1’ percentage Indicates price type (REPO rate in percentage) for REPO

trades.

=>5292 BidMarketSi

ze

N Int Total volume of market buy orders calculated for

currently expected auction price, expressed in number of

securities.
Used in closing auctions

=>5293 AskMarketSi

ze

N Int Total volume of market sell orders, expressed in number

of securitiesUsed in closing auctions.

=> 5384 AccruedInter

estAmt

N Amt Amount of accrued interest.

=> 5459 SettlType N Char MOEX settlement code for trades (269=z)

=> 5510 ChgFromW

APrice

N PriceOffset Indicates change from previous day's weighted average

price vs. last traded price.

=>5558 BuyBackPx N Price For REPO deals - REPO value calculated in roubles for

the current date

(used in Trade List (269=z) feed).

=>5559 BuyBackDat

e

N LocalMktDate For REPO deals - the date of the second part of REPO

(used in Trade List (269=z) feed). Published as REPO

buyback duration REPOTERM+<Settledate>

=>5677 Repo2Px N Price Value of the 2nd (buy-back) REPO leg, expressed in

settlement currency (used in Trade List (269=z) feed).

=>5791 TotalVolume H Amt Total volume.

Used when MDEntryType (269)=’f’

Market in auction buy orders have money volume instead

of lot quantity. Other orders use lot quantities.

=> 5902 EffectiveTim

e

N UTSTimestamp Order activation time. The order or price level with an

activation time specified is not active until that time.

=>9820 StartTime N UTSTimestamp Auction start time. Used for Dark pool and Discrete

auctions

=> 6139 TotalNumOf

Trades

N int Total number of trades.

=> 6143 TradeValue N Amt Trade Value.

=>7017 VolumeIndic

ator

N int '0' (No orders)

'1' (Total orders value is less than N*)

'2' (Total orders value is greater than N*)

Volume indicator of Dark Pool auction active orders.

Used when MDEntryType(269)=’v’ or ‘w’.

N(variable)*- the large order volume factor as determined

by the Exchange .

=> 9168 OfferNbOr N int Number of sell orders.

=> 9169 BidNbOr N int Number of buy orders.

=>9280 NominalValu

e

N float In REPO with CCP trading boards (currently EQRP),

participants do anonymous trading for REPO rate as a

cost of money.

For this trading mode, underlying securities prices in

main market are discounted for REPO trading based on

CCP (Central Counter Party) risk management

parameters. Discounts may depend on individual order

size.

For each order, the system calculates its money value

based on underlying security’s discounted price and

number of lots in the order.

These amounts are then aggregated in the orderbook at

each REPO rate level and published in the REPO with

CCP aggregated orderbook as an additional field 9280.

This field is used in OBR/OBS channels only for REPO

with CCP on-book trading.

=> 9412 OrigTime N int Indicates the microseconds portion of the transaction’s

registration time at the Matching engine. Should be added

to tag’s 273 value to get microsecond precision

timestamp. The field is available in Orders and trades

channels.

=> 10504 OrderSide N char Side of order.

=> 10505 OrderStatus N char 'O' (Active);

'T' (Order activation time hasn't come yet).

Describes the current state of order. Orders in T status are

not active and not used in matching.

=>10509 MinCurrPx N Price Minimum current price. Used to determine condition

when the short sales should be prohibited.

=>10510 MinCurrPxC

hgTime

N UTCTimeOnly Time when minimum current price was changed.

4.3.6 Market Data - Incremental Refresh (X)
Important processing notes:

 Publishing massive updates in traffic-shaped feeds takes some time. At trading period end or start, this publishing is also done in parallel with publishing massive Security

Status (35=f) messages. Parallel publishing may result in getting an incremental update from new trading state slightly before receiving the status change for a security, or

getting an incremental update from previous trading state after the trading status changes to new trading period.

 For channels where add, change and delete MDUpdateActions are possible (Orders, Orderbook) the correct state is achieved after processing the whole set of repeating

group entries in the message.

 FAST message length is limited by the network MTU size, current limitation is 1300 bytes. For massive updates, this results in splitting the data per several FAST

messages. In this case, it is recommended to continue processing messages until you receive an update with FAST message size well less than the maximum length.

Otherwise you may get short time crossed book state.

 There is no Delete or Change actions for Trades feed.
Table 15

<Standard Message Header> Y MsgType = 'X'

268 NoMDEntries Y NumInGroup Number of entries in Market Data message.

=> 279 MDUpdateAction Y char '0' (New);

'1' (Change);

'2' (Delete).

Type of Market Data update action.

=> 269 MDEntryType C char '0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value);

'4' (Opening Price);

'5' (Closing Price);

'7' (Trading Session High Price);

'8' (Trading Session Low Price);

'9' (Trading Session VWAP Price);

‘A’ (Imbalance), expressed in number of securities

'B' (Trade Volume), expressed in number of securities;

'J' (Empty book);

'N' (Session high bid);

'O' (Session low offer);

‘Q' (Closing Auction clearing price); the clearing

volume (271) is expressed in lots;

 ‘W’(Closing auction price);

‘c’(Closing auction volume), expressed in number of

securities ;

‘f’ (For MSR/MSS feeds - volume of buy market

orders in closing auction, expressed in number of

securities; for OLR/OLS – market in closing auction

buy order);

‘g’(For MSR/MSS feeds: volume of sell market orders

in closing auction, expressed in number of securities;

for OLR/OLS – market in closing auction sell order);

'i' (Last bid price);

'j' (Last offer price);

'h' (Open period price);

'k' (Close period price);

Type Market Data entry.

Notes:

 The availability of this field’s values depends on

market type (FX or Equities), SecBoard code (336)

and the Exchange trading rules.

 Different feeds have subsets of possible values,

depending on the data contents.

 Empty Book (269=J) indicates no data for a

security. Empty Book message may be generated

market-wide, which indicates that you should

remove all previously collected data and start over.

 Meaning of some values depend on market type (FX

or Equities) and corresponding trading rules

 Off-book trading boards do not have data in

Orderbook Snapshot (OBS) and OrderList snapshot

feeds (OLS).

 Off-book trading boards may have market statistics

data for a Symbol taken from on-book trading

boards for this Symbol (market, current, WAP

prices, etc.)

 The set of field values may be extended following

the Trading system updates. It is recommended to

allow in your code ignoring unknown values of this

field, and linked to such entry values of other fields,

until the new field meaning can be supported by

your application.

 Indexes are published in Market statistics (MSR and

MSS) channels.

 Preious trading day values are indicated by

T
a

g

Field name

R
eq

'd

Type Valid values Comments

'l' (Market price 2); on FX market – FX fixing price as

calculated between 11:59 and 12:00 Moscow time.

'm' (Market price); On FX market – FX fixing price

'o' (Official open price);

'p' (Official current price);

'q' (Last admitted quote); On FX market: international

FX fixing price

'r' (Official close price);

'v' (Total bid volume);

'w' (Total offer volume);

's' (Dark pool Auction price)
'x' (Dark Pool Auction volume), expressed in number

of securities.;

y’(Accrued coupon yield per the unit of security at

current date, expressed in rubles);

'u' (Duration);

'z' (Trade list).

additional tag 286

=> 278 MDEntryID N String Unique Market Data Entry identifier. Used, for example, for

TRADENO.

Notes:

 For trades (269=z) entries, contains a string with

Exchange trade number that is equal to trade

numbers in all trading interfaces

 For aggregated orderbook (OBS and OBR channels)

contains a unique string identifier of price level

 For OrderList (OLR, OLS channels), contains a

string identifier of Add Order (279=0) update for an

order, NOT directly tied to the Exchange Order

number in trading interfaces.

=> 55 Symbol Y String Ticker symbol. The MOEX internal instrument identifier,

SecCode.

Note: an instrument with a given SecCode may be traded in

several trading boards (SecBoard). You should use each

Symbol (55)+TradingSessionID (336) combination as an

individual security with own order book and list of trades.

=> 83 RptSeq Y int Sequence number of message within report series.

Incremented by one for each update entry and for security

status updates.

=> 270 MDEntryPx C Price Price of the Market Data Entry.

Conditionally required when MDUpdateAction (279) =

New(0) and MDEntryType (269) not in ('A', 'B', 'C', 'J').

Conditionally required when MDEntryType (269) = "Auction

Clearing Price"

=> 271 MDEntrySize C Qty Quantity represented by the Market Data Entry.

Conditionally required when MDUpdateAction = New(0)

and MDEntryType (269) in ('0', '1', '2', ‘A’, 'B', 'C').

Conditionally required when MDEntryType = ‘Q’ (auction

clearing price), ‘g’(Offer volume market order in closing

auction)

Note: For 269=B, this field value is expressed in number of

securities. For all other values of tag 269, this field value is

expressed in number of lots.

=> 272 MDEntryDate N UTCDateOnly Date of Market Data Entry.

=> 273 MDEntryTime N UTCTimeOnly Time of Market Data Entry.

=> 336 TradingSessionID N String Identifier for Trading Session. Used to represent

SECBOARD.

Note: an instrument with a given SecCode may be traded in

several trading boards (SecBoard). You should use each

Symbol (55)+TradingSessionID (336) combination as an

individual security with own order book and list of trades.

=> 625 TradingSessionSu

bID

N String NA – No trading

O – Opening auction period

C – Closing period

F – Final closing period

N – Normal trading period

L – Closing auction period

I – Discrete auction period

D – Dark pool auction period

E – Trading at the closing auction price period

Indicates the trading period

For updates and snapshots, Period value indicates a period

for an event reported, not necessarily the currently running

period.

=> 276 QuoteCondit

ion

N MultipleValueStrin

g

'C' (Exchange Best)

Space-delimited list of conditions describing a quote.

=> 277 TradeCondit

ion

N MultipleValueStrin

g

'C' (Cash Trade (same day clearing));

'J' (Next Day Trade (next day clearing));

'R' (Opening Price) ;

'AJ' (Official Closing Price);

‘98’ (Minimum value);

‘99’ (Maximum value).

Space-delimited list of conditions describing a trade.

=> 286 OpenCloseS

ettlFlag

N MultipleValueStrin

g

'4' (Entry from previous business day) Flag that identifies a market data entry.

=> 40 OrdType H Char ‘1’(Market) Order type.

Used when MDEntryType (269) =’g’,’f’

Note: Market in Closing Auction orders are activated and

published in Order List feed in Closing Auction period.

Matching occurs at the end of closing auction.

Other market orders are not published in the feed because

they never stay active.

=> 451 NetChgPrev

Day

N PriceOffset Net change from previous day closing price vs. last traded

price.

=> 236 Yield N Percentage Yield percentage.

=> 64 SettlDate N* LocalMktDate Specific date of trade settlement (SettlementDate) in

YYYYMMDD format

Notes:

For trades – settlement date of regular trade or negotiated

deal.

For REPO trades – settlement date of first part of REPO.

=> 44 Price N Price REPO rate for REPO trades

=> 423 PriceType N int ‘1’ percentage Indicates price type (REPO rate in percentage) for REPO trades.

=> 5292 BidMarketSi

ze

N Int Total volume of market buy orders calculated for currently

expected auction price, expressed in number of

securities.Used in closing auctions

=> 5293 AskMarketS

ize

N Int Total volume of market sell orders, expressed in number of

securitiesUsed in closing auctions

=> 5384 AccruedInte

restAmt

N Amt Amount of accrued interest.

=> 5459 SettlType N Char MOEX settlement code for trades (269=z)

=> 5510 ChgFromW

APrice

N PriceOffset Indicates change from previous day's weighted average price

vs. last traded price.

=> 5558 BuyBackPx N Price For REPO deals - REPO value calculated in roubles for the

current date

(used in Trade List (269=z) feed).

=> 5559 BuyBackDat

e

N LocalMktDate For REPO deals - the date of the second part of REPO

(used in Trade List (269=z) feed). Published as REPO

buyback duration REPOTERM+<Settledate>

=> 5677 Repo2Px N Price Value of the 2nd (buy-back) REPO leg, expressed in roubles

(used in Trade List (269=z) feed).

=> 5791 TotalVolum

e

H Amt Used when MDEntryType (269)=’f’

Market in auction buy orders have money volume instead of

lot quantity. Other orders use lot quantities.

=> 5902 EffectiveTi

me

N UTSTimestamp Order activation time. The order or price level with an

activation time specified is not active until that time.

=> 9820 StartTime N UTSTimestamp Auction start time. Used for Dark pool and Discrete auctions

=> 6139 TotalNumOf

Trades

N int Total number of trades.

=> 6143 TradeValue N Amt Trade Value.

=>7017 VolumeIndi

cator

N int '0' (No orders)

'1' (Less then N* minimum order value)

'2' (Greater then N* minimum order value)

Volume indicator of Dark Pool auction active orders. Used

when MDEntryType(269)=’v’ or ‘w’.

N(variable)*- the large order volume factor as determined by

the Exchange .

=> 9168 OfferNbOr N int Number of sell orders.

=> 9169 BidNbOr N int Number of buy orders.

=>9280 NominalVal

ue

N float In REPO with CCP trading boards (currently EQRP),

participants do anonymous trading for REPO rate as a cost of

money.

For this trading mode, underlying securities prices in main

market are discounted for REPO trading based on CCP

(Central Counter Party) risk management parameters.

Discounts may depend on individual order size.

For each order, the system calculates its money value based

on underlying security’s discounted price and number of lots

in the order.

These amounts are then aggregated in the orderbook at each

REPO rate level and published in the REPO with CCP

aggregated orderbook as an additional field 9280.

This field is used in OBR/OBS channels only for REPO with

CCP on-book trading.

=> 9412 OrigTime N int Indicates the microseconds portion of the transaction’s

registration time at the Matching engine. Should be added to

tag’s 273 value to get microsecond precision timestamp. The

field is available in Orders and Trades channels.

=> 10504 OrderSide N char Side of order.

=> 10505 OrderStatus N char 'O' (Active);

'T' (Order activation time hasn't come yet).

Describes the current state of order. Orders in T status are not

active and not used in matching.

=>10509 MinCurrPx N Price Minimum current price. Used to determine condition when

the short sales should be prohibited.

=>10510 MinCurrPx

ChgTime

N UTCTimeOnly Time when minimum current price was changed.

5. Network Connectivity Guide

5.1. Configure a VPN connection with MOEX using Windows XP

To configure a VPN connection, do the following:

1. Make sure you are connected to the Internet;

2. Click Start, and then click Control Panel;

3. In Control Panel, double click Network Connections:

4. Click Create a new connection in the Network Tasks task pad:

5. In the Network Connection Wizard, click Next:

6. Click Connect to the network at my workplace and then Next:

7. Click Virtual Private Network connection and then Next:

8. Type Company Name (e.g. MOEX VPN Connection), and then click Next:

9. Click Do not dial the initial connection, and then click Next:

10. Type the server address provided by MOEX team, and then click Next:

11. Click My use only and then Next:

12. Click Finish:

13. Leave User name and Passwod empty, and then click Properties

14. On Security tab, click Advanced (custom settings) and then Settings…:

15. Choose Optional encryption (connect even if no encryption) data encryption and then click OK:

16. On Networking tab, choose PPTP VPN type of VPN and then click OK:

5.2. Configure a VPN connection with MOEX using Windows 7

1. Make sure you are connected to the Internet

2. Open Control Panel→Network and Internet→Network and Share Center and then click Set up a new connection or network:

3. Choose Connect to a workplace and then click OK:

4. Choose No, create a new connection and then click Next

5. Click Use my Internet Connection (VPN):

6. Type the server address provided by MOEX team to the Internet address field, type MOEX VPN Connection to the Destination name field,

check Don’t connect now; just set it up so I can connect later and then click Next:

7. Leave the next page without changes and then click Next:

8. Click Close:

9. Open Control Panel→Network and Internet→Network and Share Center and click Change adapter setting:

10. Choose Properties of the just created connection:

11. On Security tab choose Point to Point Tunneling Protocol (PPTP) VPN type, choose Optional encryption (connect even if no encryption) data

encryption and then click OK:

5.3. Configure a VPN connection with MOEX using OpenSUSE

1. Make sure you are connected to the Internet;

2. Install pptp client using the following command:

sudo zypper install pptp

3. Run the following command:

sudo /usr/sbin/pptp-command setup

4. Type ‘4’ and press enter:

1.) Manage CHAP secrets

2.) Manage PAP secrets

3.) List PPTP Tunnels

4.) Add a NEW PPTP Tunnel

5.) Delete a PPTP Tunnel

6.) Configure resolv.conf

7.) Select a default tunnel

8.) Quit

?: 4 + <enter>

5. Type ‘1’ and press enter:

Add a NEW PPTP Tunnel.

1.) Other

Which configuration would you like to use?: 1 + <enter>

6. Type ‘micex_vpn_connection’ and press enter:

Tunnel Name: micex_vpn_connection + <enter>

7. Type ‘<server address>‘ and press enter:

Server IP: <server address> + <enter>

8. Type ‘del default’ and press enter:

route: del default + <enter>

9. Type ‘add default gw 1.1.1.1 TUNNEL_DEV’ and press enter:

route: add default gw 1.1.1.1 TUNNEL_DEV

10. Simply press enter:

route: <enter>

11. Type ‘test’ and press enter:

Local Name: test

12. Leave a default value, simply press enter:
Remote Name [PPTP]: <enter>

13. If you have done everything correct, you will see:

Adding micex_vpn_connection - <server address> - test - PPTP

Added tunnel micex_vpn_connection

14. Type ‘8’ and press enter to exit the setup wizard.

15. The next step is to make a few changes in a configuration file which was created on previous steps by the wizard. At first open it using the

following command:

sudo vim /etc/ppp/peers/micex_vpn_connection

16. Needed changes are colored by red:

PPTP Tunnel configuration for tunnel micex_vpn_connection

Server IP: <server address>

Route: route del default

Route: route add default gw 1.1.1.1 TUNNEL_DEV

noauth

Tags for CHAP secret selection

name test

remotename PPTP

Include the main PPTP configuration file

file /etc/ppp/options.pptp

17. Please be careful and don’t forget to save this file before closing. That’s all. Now you are ready to establish the VPN connection using the

following command:

sudo /usr/sbin/pptp-command start micex_vpn_connection

You will see something like this:

Using interface ppp0

Connect: ppp0 <--> /dev/pts/1

local IP address 1.1.1.19

remote IP address 1.1.1.1

Script ?? finished (pid 30023), status = 0x0

Script /etc/ppp/ip-up finished (pid 30032), status = 0x0

Route: add -net 0.0.0.0 gw 1.1.1.1 added

Route: add -net 1.1.1.0 netmask 255.255.255.0 gw 1.1.1.1 added

All routes added.

Tunnel micex_vpn_connection is active on ppp0. IP Address: 1.1.1.19

18. To stop this connection use the following command:

sudo /usr/sbin/pptp-command stop

19. Important: After the VPN connection is stopped you will need to return the default route rule you had before. Otherwise the next tries to

establish the VPN connection will be failed. It’s recommended to make a script which will be responsible for the default route rule

restoring.

5.4. Troubleshooting

1. The VPN connection is established but your application doesn’t receive UDP packets (Windows 7)

1.1 Open status of your VPN connection and check if the count of ‘Received’ bytes is continuously growing; If it’s not so, ask for help the

MOEX support team.

1.2 Check firewall settings. Temporary turn off the firewall. If after that all seems ok, turn on firewall again but add the firewall rule:

 Open Windows Firewall→Advanced settings;

 Choose Inbound Rules and on the right click New Rule:

 Leave the first page without changes and click Next:

 On the next page you need to specify path to your program:

 Leave the pages below without changes:

 Here you should to specify the name of this rule. E.g. MyApplicationRule.

6. Certified Tools

6.1. EPAM – B2Bits ® FIX Antenna TM Library

EPAM Systems, Inc., the leading software engineering and IT Outsourcing (ITO) provider in Central and Eastern Europe (CEE), and

B2BITS®, EPAM Systems Capital Markets Competency Center, have certified their high performing FIX engine FIX Antenna TM with MOEX Market

Data Multicast FIX/FAST Platform.

http://www.epam.com/software-development-services-summary.htm
http://www.b2bits.com/trading_solutions/fix_engines.html

FIX Antenna TM
 (C++ and .NET) allows one to transparently subscribe to Market Data from MOEX Market Data Multicast FIX/FAST

Platform, hiding all feeds arbitraging and recovery functionality behind straightforward object oriented API. The package includes complete

documentation and samples, illustrating the use of FIX Antenna TM with MOEX Market Data Multicast FIX/FAST Platform. .NET package also

contains the GUI client, which receives Market Data from MOEX Market Data Multicast FIX/FAST Platform.

6.1.1 Quick Start – Code Samples
Here the source code of the simple client. This code is a skeleton of the real application and shows one of the possible ways to use FA

micex_mfix.

instrument_listener_impl.h:
#pragma once

#include <B2BITS_micex_mfix_listeners.h>

namespace mfix_micex_client {
 class instrument_listener_impl
 : public micex_mfix::instrument_listener {
 public:
 virtual bool on_security_definition(const micex_mfix::security_description &sec_desc,
 const micex_mfix::security_id &sec_id,
 const micex_mfix::symbol &symb,
 const std::string &board,
 const Engine::FIXMessage &d_msg,
 const std::string &channel_id)
 {
 //add your processing code here, return your result true or false
 return false;
 }

 virtual void on_subscribed(const micex_mfix::symbol &symb,
 const std::string &board,
 micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here
 }

 virtual void on_unsubscribed(const micex_mfix::symbol &symb,
 const std::string &board,
 micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here
 }

 virtual void on_increment(const micex_mfix::symbol &symb,
 const std::string &board,
 const Engine::TagValue &entry,
 micex_mfix::mfix_feed_type feed_type)

http://www.b2bits.com/trading_solutions/fix_engines.html
http://www.b2bits.com/trading_solutions/micex-fixfast.html
http://www.b2bits.com/trading_solutions/micex-fixfast.html

 {
 //add your processing code here
 }

 virtual void on_security_status(const micex_mfix::symbol &symb,
 const std::string &board,
 const Engine::FIXMessage &msg,
 micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here
 }

 virtual bool on_natural_refresh(const micex_mfix::symbol &symb,
 const std::string &board,
 const micex_mfix::increments &nr_msgs,
 micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here, return your result true or false
 return true;
 }

 virtual void on_snapshot(const micex_mfix::symbol &symb,
 const std::string &board,
 const micex_mfix::snapshots &msgs,
 micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here
 }

 virtual void on_recovery_started(const micex_mfix::symbol &symb,
 const std::string &board,
 micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here, return your result true or false
 return false;
 }

 virtual void on_recovery_stopped(const micex_mfix::symbol &symb,
 const std::string &board,
 micex_mfix::mfix_recovery_reason reason,
 micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here
 }

 virtual void on_error(const micex_mfix::symbol &symb,
 const std::string &board,
 const std::string &error,
 micex_mfix::mfix_feed_type feed_type)

 {
 //add your processing code here
 }
 };
}

application_listener_impl.h:
#pragma once

#include <B2BITS_micex_mfix_listeners.h>

namespace mfix_micex_client {
 class application_listener_impl
 : public micex_mfix::micex_mfix_application_listener {
 public:
 virtual void on_error(const std::string &error)
 {
 //add your processing code here
 }

 virtual void on_process(const Engine::FIXMessage &msg, const std::string &channel_id)
 {
 //add your processing code here
 }

 virtual void on_feed_reset(const std::string &channel_id, micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here
 }

 virtual void on_heartbeat(const std::string &channel_id, micex_mfix::mfix_feed_type feed_type)
 {
 //add your processing code here
 }
 };
}

main.cpp:
#include <iostream>

#include <B2BITS_FixEngine.h>
#include <B2BITS_micex_mfix_application.h>

#include "application_listener_impl.h"
#include "instrument_listener_impl.h"

using namespace mfix_micex_client;

void subscribe_and_wait(micex_mfix::micex_mfix_application *app,

 instrument_listener_impl *&ins_listener);

int main(int argc, char *agrv[])
{
 micex_mfix::micex_mfix_application *app = nullptr;
 application_listener_impl *app_listener = nullptr;
 instrument_listener_impl *ins_listener = nullptr;

 try {
 Engine::FixEngine::init("./engine.properties");

 //configure parameters
 micex_mfix::micex_mfix_application_params app_params;
 app_params.templates_fn_ = "./FIX50SP2.xml";
 app_params.config_xml_ = "./config.xml";

 app_listener = new application_listener_impl();
 app = Engine::FixEngine::singleton()->createMOEXApplication(app_params, app_listener);

 subscribe_and_wait(app, ins_listener);
 } catch (const Utils::Exception &ex) {
 std::cerr<<"Exception: "<<ex.what()<<"\n";
 if (nullptr != app_listener) {
 app_listener->release();
 }

 if (nullptr != ins_listener) {
 ins_listener->release();
 }

 return 100;
 }

 app_listener->release();
 ins_listener->release();

 app->release();

 return 0;
}

void subscribe_and_wait(micex_mfix::micex_mfix_application *app,
 instrument_listener_impl *&ins_listener)
{
 //get channels id
 micex_mfix::channel_ids channels(app->get_channel_ids());

 //get orderbook feed
 micex_mfix::micex_feed &order_book_feed = app->get_orderbook_feed();

 ins_listener = new instrument_listener_impl();

 //subscribe to known instrument in channel[1], with market recovery as recovery type
 order_book_feed.subscribe_by_symbol("AFLT", "EQBR", *ins_listener,
 channels[1],micex_mfix::RM_USE_MARKET_RECOVERY);
 while (true) {
 std::cout<<"Type 'q' for exit\n\n";
 char c;
 std::cin>>c;
 if ('q' == c || 'Q' == c) {
 break;
 }
 }

 order_book_feed.unsubscribe_by_symbol("AFLT", "EQBR", channels[1]);
}

6.1.2 API Overview
Here is a list of all documented files with brief descriptions:

/include/B2BITS_micex_mfix_application.h

/include/B2BITS_micex_mfix_listeners.

/include/B2BITS_micex_mfix_types.h

Here are the classes, structs, unions and interfaces with brief descriptions:

micex_mfix::instrument_listener instrument listener (observer)

micex_mfix::micex_feed Represents micex feed (stream)

micex_mfix::micex_mfix_application Represents micex mfix application

micex_mfix::micex_mfix_application_listener
Represents micex mfix application
listener

micex_mfix::micex_mfix_application_params Startup parameters

micex_mfix::security_definition_listener Receives Security Definition messages

6.1.2.1.1. micex_mfix::instrument_listener Class Reference

#include <B2BITS_micex_mfix_listeners.h>

Public Member Functions

virtual void on_subscribed (const symbol &symb, const std::string &board, mfix_feed_type
feed_type)=0

 Faired when successfully subscribed to security description.

virtual void on_unsubscribed (const symbol &symb, const std::string &board, mfix_feed_type
feed_type)=0

 Faired when successfully unsubscribed from security description.

virtual void on_increment (const symbol &symb, const std::string &board, const
Engine::TagValue &entry, mfix_feed_type feed_type)=0

 Faired when user should reset book with the bnew values.

virtual void on_security_status (const symbol &symb, const std::string &board, const

Engine::FIXMessage &msg, mfix_feed_type feed_type)=0

 Faired when user should update instrument status.

virtual bool on_natural_refresh (const symbol &symb, const std::string &board, const

increments &nr_msgs, mfix_feed_type feed_type)=0

Faired when user should reset book with the bnew values and Natural Refresh is
used return true if book is recovered otherwise false

virtual void on_snapshot (const symbol &symb, const std::string &board, const snapshots
&msgs, mfix_feed_type feed_type)=0

 Faired when user should reset book with the bnew values.

virtual void on_recovery_started (const symbol &symb, const std::string &board,
mfix_feed_type feed_type)=0

 Faired when recovery is started.

virtual void on_recovery_stopped (const symbol &symb, const std::string &board,

mfix_recovery_reason reason, mfix_feed_type feed_type)=0

 Faired when recovery is ended.

virtual void on_error (const symbol &symb, const std::string &board, const std::string &error,
mfix_feed_type feed_type)=0

 Faired on error (example: when second subscribing was attempt for the same
instrument)

Note:

Objects of this class do not put to the std::auto_ptr or other smart pointers (except specialized, example Utils::RefCounterPtr). Object must be created via
"new" keyword only.

6.1.2.1.2. micex_mfix::micex_feed Class Reference

#include <B2BITS_micex_mfix_application.h>

Public Member Functions

virtual void subscribe_by_symbol (const symbol &symb, const std::string &board,

instrument_listener &listener, const std::string &channel_id, mfix_recovery_mode

recovery=RM_USE_MARKET_RECOVERY)=0

Subscribes instrument by symbol.

virtual void unsubscribe_by_symbol (const symbol &symb, const std::string &board, const
std::string &channel_id)=0

Unsubscribes from instrument by symbol.

virtual void subscribe_all (instrument_listener &listener, const std::string &channel_id,

mfix_recovery_mode recovery=RM_USE_MARKET_RECOVERY)=0

Subscribe all instruments.

virtual void unsubscribe_all (const std::string &channel_id)=0

Unsubscribe all instruments.

6.1.2.1.3. micex_mfix::micex_mfix_application Class Reference

#include <B2BITS_micex_mfix_application.h>

Public Member Functions

virtual void release ()=0

Releases resources assigned to application.

virtual micex_feed & get_orderbook_feed () const =0

Retrieves order book feed (stream)

virtual micex_feed & get_statistics_feed () const =0

Retrieves statictics feed (stream)

virtual micex_feed & get_orders_feed () const =0

Retrieves order feed (stream)

virtual micex_feed & get_trades_feed () const =0

Retrieves trades feed (stream)

virtual const channel_ids & get_channel_ids () const =0

Returns channel ids.

6.1.2.1.4. micex_mfix::micex_mfix_application_listener Class Reference

#include <B2BITS_micex_mfix_listeners.h>

Public Member Functions

virtual void on_error (const std::string &error)=0

Called on errors in micex mfix application

This function can be called from different thread, so used should make it thread-safe in implementation

virtual void on_process (const Engine::FIXMessage &msg, const std::string &channel_id)=0

Called on non X, d and W messages

This function can be called from different thread, so used should make it thread-safe in implementation

virtual void on_feed_reset (const std::string &channel_id, mfix_feed_type feed_type)=0

Called on reset for feed (X-message was received with entry 269=J)

virtual void on_heartbeat (const std::string &channel_id, mfix_feed_type feed_type)=0

Called on heartbeat messages

Note:

Objects of this class do not put to the std::auto_ptr or other smart pointers (except specialized, example Utils::RefCounterPtr). Object must be

created via "new" keyword only

6.1.2.1.5. micex_mfix::micex_mfix_application_params Struct Reference

#include <B2BITS_micex_mfix_application.h>

Public Types

enum recovery_type { udp_recovery, tcp_recovery }

Public Attributes

std::string templates_fn_

Path to the MFIX Market Data FAST templates file.

std::string config_xml_

Path to the MFIX Market Data configuration file.

size_t number_of_workers_

Number of threads to decode incoming data Default value is 4

size_t increment_queue_size_

Maximum number of messages could be stored in recovery mode for the particular instrument. Default value is 50

bool check_udp_sender_

Pass true to check the UDP packet sender's IP address. Default value is true

std::string listen_interface_ip_

IP of network interface to listen on; nullptr or empty string means all interfaces. Default value is null (all interfaces)

size_t incoming_udp_buffer_size_

UDP incoming buffer size. Should be tuned in case of UDP message miss

size_t application_message_queue_size_

Count of messages that are queued for processing by Application.

bool log_incoming_FIX_messages_

Pass true to write out to the log file incoming FIX messages Default value is false

bool log_incoming_udp_messages_

Pass true to write out to the binary log file incoming FAST messages Default value is false

std::size_t hole_pack_delay_

Number of incoming messages with seq num out of order to skip before start recovery. Default value is 1

recovery_type recovery_type_

Type for the recovery. tcp_recovery uses only tcp recovery for instruments (34 tag is used to detect hole) udp_recovery uses one

mode of the mfix_recovery_mode for instruments (83 tag is used to detect hole) Default value is udp_recovery

std::string user_login_

User login for tcp recovery session Default value is empty string

std::string user_password_

User password for tcp recovery session Default value is empty string

6.1.2.1.6. micex_mfix::security_definition_listener Class Reference

#include <B2BITS_micex_mfix_listeners.h>

Public Member Functions

virtual bool on_security_definition (const security_description &sec_desc, const security_id &sec_id, const symbol &symb, const std::string
&board, const Engine::FIXMessage &d_msg, const std::string &channel_id)=0

Faired when security definition message was received

Return true if need to continue listening instrument replay, false otherwise

Note:

Objects of this class do not put to the std::auto_ptr or other smart pointers (except specialized, example Utils::RefCounterPtr). Object must be

created via "new" keyword only.

