Moscow Exchange

Market Data Multicast
FIX/FAST Platform

User Guide

Moscow Exchange
Version 3.3.3
September 29, 2014

Contents

1. (@AY gV = TSROSO 5
O B To T W [0 T=] 0L A 1 (] YA OSSPSR PPRUR 5
1.2, SEEAMING DALAc.eitiieiitieti ettt h bbbt h e e st e st e b e b e b e e b £ e E £ 4 H £ e h e e R e e R b e b oA E £ E £ R £ A E £ 4R £ e R e e R b e b e R e R e R R e R e Rt e e e b et bbb nneere s 6
IR T [0 To3 £ g =T a1 vo LAY LTSEST: o [o OSSPSR 6
T o b G o 11 - L PSP O TP OTR PR UPRPPPRIN 6
T Nl I O] 14T o =] o] o TSP T PP RSO PP PP URPRURIN 6
1.8, IMUILICAST DEIIVEIY ...ttt ettt et e st et e e bt e s te e teeRe e be e st e eRe e e seeseeeseeeReeateas e e eae e st e eseeeReeateenteeRe e teesseateebeentenneesbeeneeereenreenteas 6
O -0 1T O PP R PPN 7

2. Getting Started with MOEX Market Data FIX/FAST MUlticast PIatfOrm ..o 8
2.1. Basic Scenario — Connect before the Trade Day STAMEAcc.oocuiiiiii it e e e e s e e sbe e beeneesreenreeraenreeeeas 8
2.2. Connect after the Trade DAY STAMEc..ciieeieie ettt bbbt e e bbbt b b £ e b £ e bt e R e e e et e bt bt e bt b e e bt e b e e st e b et e s beebenbenbenneereas 8
2.3. Incremental Feeds A and B AIDITIALIONooiiiiiie it te et e st e e st e sbe e te e st e s b e e s teas e e nbe e st e areeabeenteeReenreeteeneenreenre s 8

3. (00T =B U T ([P 1] Y2 PTS PSPPSR 11
K T0 O o 11 (o] AN £ 0T (o (SRRSO RSRPPRPRPRRON 11
3.2, FAST IMPIEBMENTALION ...ttt ettt bbbt btk e e h e h e st e b e b e A H b e e h e E £ e h e 4R e 2Rt e b e bt b e b e b e e b e e he e st e b e b e b e st e bt eneene s 13

K I A 1o o [FTox o] OSSP PR PRSP 14
K (o) o8 = T =XYoo o [T [P SOP RS SSRPS 14
I B 1010 [Tod L I To o[o TS U USSP PP RPTPPRPRPRPRON 14
K S 1= (ol = ol o [T o IO 1= 10 £SO S ORI 15
K ST o AN I =101 U= SRR UPURTUPRTSUR 15
I I B =T oto Lo [g To o) =T AV 1< TSP P TPRPRPRPPR PRSP 17
A S 1o o] o] o -T2 o] o= ST UPURUPRTSUR 18
TR T D 1 = B =TT LTS U RSP PRRTRRPRPRTPIN 20

3.3.1

INSTIUMEBNES FEOA ... 21

3.3.2 OrderBook, Market Statistics, Orders, and Trades FEEASooov e 21

TR G T |V = U o T o0 1Y =T VA oYl LSRR 23
KT 0 B O o o (=T] . SO RSSSR 23
K S ToT 1Y =T T TP TP TP U PR TR PPTPRPPRPPPPRPPIN 24
34,1 MarKet RECOVEIY OVEIVIEWveiveeuveiiieiteeieettesteestesteestaestesseesteestesseesseassease e seesseese e seenseeEeesseeneease et e eseeeReesteeneenseeneeeneease e beeneenseetennee e 25
3.4.2 RECOVEIING DALA — PrOCESS.iitieiteeuteitteitteiesttesteete st estaeteste e teestesseesaeeseeste e teaseeese e seasee et e enseaneease et e eseeeEeesteeneease e seeneeabeenteaneenneeneeanee e 25
K B O e (=T o] I\ TSP TSP ST PTP PP PR PRPRPRON 27
4. e DY Lo Vo [o LTt 1 o LA o] o SRS 28
4.1, FIX COMPONENT BIOCKS......c.uiiiiiiieitecie it ettt e st ettt este et e s aeesteeseesseesbeestesaeesseesseeae e beenteeseeeaeesseeReeeReesseeneeaseeeeenseabeeateentesneestaenneaneennnentens 28
4.1.1 StANAArd MESSAGE HEAUETeiuiitiiieiieiee ettt b bbbt h e s e et e bbb E e E £ e h e bt e R e e e e b e bt b e e b e bt e b e e b b e neese e b e b et e bt nbe st e ene s 28
o A 10151 £ (11T o | ST OO USSP PP OURTUPRPPRTPRN 29
4,13 INSTIUMIENE EXEENSTON. ... tiviiitiitiitestietestie ettt sttt be s e s e s et e b e sbe s b e s bt e b e e bt e b e e s e e s e e s b e e b e eb e e E e e b e e Rt e R e e R e e Rt e A b e b e b e e b e e b e e be e bt e st e s e et et e benbenbeabeeneas 30
o S \V =T R T=To 1T | TP TSP P TP PP PTPTPRPRPRORON 31
4.2, FIX SESSION-LEVEI IMIESSAUESc.vveuviirieiteeteette it e ste et s teesteete s st e steeseesseesteestesaeesbeesseass e beenteeseesae e seesseebeeaseeneeaseeteenseaba e teentesaeeaseennesneenneansens 32
o R o To o) I (A OSSPSR 32
o o [o 11 | A () TSSOSO PR PPPT PP PRPRPRPRON 33
O T o 1= U 1o T=T: L (0) OSSOSO 33
4.3. FIX APPICALION-LEVEI IMIESSAGESc.veeveiiteeieetie et e ittt et et e et e ste e e et e s be e beeaeesbe e seesseebeeateessesae e seese e e b e e s seeseeaseetaenseesaeabeentesneeareenseansenneentens 33
4.3.1 SECUTTEY DETINITION () ..eiutitetiitiiteiti ettt bbbt bt bbb o1 et e bt E e bt E e E e h e b £ 4R e e A e e b e b e b e e b e e bt e b e e b e e st e se e b e b et e bt et e e beene s 33
A 1= TN 4 V] r- LU S (OSSO 34
4.3.3 Trading SESSION STALUS (1)veeiueeiiieiie ittt ettt e st e et e e et e e beeasseeateeesseesseeeRte e beeesb e e see e st e e b e e enteeebeeente e teeenbeenneeanbeenteeanneeas 36
4.3.4 IMArKEt DAtA REGQUESE (V) ..ueeeiteiteitiitieii ettt bbb bk e b e R a8 £ 18 e b e H e bt H e e E e 4 h e e E £ o8 £ e R e e A b e b e b e b e e b e e bt e b e e R e e s e et et e b e st e et e st e nne s 36
4.3.5 Market Data - SNapShOt/FUIT RETTESN (M) ...ttt ettt e et e e b e e e e e bt e e st e e s beeeabe e teeesbeesaeeabeeareeanteeas 36
4.3.6 Market Data - INCremental RETIESN (X))cuiiiiii ettt b et e b e et e et e e e st e e ebeeaa b e e beeesbeesaneebeeateeanneens 43

5. NETWOTIK CONNECTIVITY GUITE ...ttt bbb bbbt e s a1 e £ 8o b e H b4 H e E £ e h e e Rt oAb e b e bt bt b e b e e bt e b e e st et e b e ebe st e et e e benre s 50

5.1. Configure a VPN connection with MOEX USING WINGAOWS XPccuoiiiiiiiieiiieie ettt sttt et sbeenteenee e 50
5.2. Configure a VPN connection With MOEX USING WINGOWS 7.......ccuiiiiiiieieiie it ese e ee e seeste e ta e teastessaestaensessaesseansesseessaessesssesseessens 63
5.3. Configure a VPN connection with MOEX USING OPENSUSEooiiiiiiiiie ittt et s e e teetesaeesreeaeeneesnaeneens 73
oI S N (0¥ o] [=2S] s ToTo 1 T3 To TR ST TSRS U PO VPR PRPRPR 77
6. (00T] 1o I 0o PSSP 82
6.1. EPAM —B2Bits ® FIX ANLENNA ™ LIDIAIY.......cooeiiiiveieieitsiseeeeeee et ese sttt es st te st et es e ts st s essses st et s sss st esases e sesesetssennsntetatesensnsseetatans 82
B.1.1 QUICK STArt — COUE SAMPIES..... .o it b bbbttt e b E bt e b e b £ h £ e R e e R b e b e b e b e ke e b e e bt e st e se et e et et e bt abeabeene s 83

B.1.2 AP OVEIVIBW ... ettt e e e e e e e e ettt ee e e e e e e teeeeeeeeee e e e e e eeeeeeeeeeea e eeeeeeeeeeee e e eeeeeeeeeeeeaanreeeeaeeeesaeannneeeaeens 87

This document describes the Moscow Exchange (identified as MOEX below) MOEX Market Data Multicast FIX/FAST Platform. This
platform provides the new highly efficient mechanism for delivering MOEX Market Data to market data consumers. The mechanism utilizes the FIX
protocol for messages structure and syntax, FAST protocol for optimization of data streaming, and UDP protocol for delivering data to multiple users
efficiently.

MOEX Market Data Multicast FIX/FAST Platform includes the following aspects: streaming data, incremental messaging, FIX format, FAST
compression, multicast delivery, and recovery.

1.1. Document History

Issue Date Description

1.0 May 25, 2011 Original version of this document

2.0 December 12, 2012 Clarifications added

3.3 April 08, 2013 Negotiated and REPO deals — specific fields added

Message format changes to separate SECBOARD, Trading Status, and Trading Period in
individual tags.

Additional fields to support REPO with CCP, Closing Auctions, Discrete Auctions, Dark
pool auctions, T+2 trading data

New FAST compression template

Improved readability and fixing document’s errata

331 May 24, 2013 Fixing document errors and adding clarifications per users’ feedback. Removing unused
fields from document.

Compression template has been corrected.

Document has revision marks ON to highlight changes.

3.3.2 September 04, 2013 Updated specifications for units (lots or securities) that are used in trading volumes (271)
3.3.3 March 26, 2014 Added field, due to changes in the Listing Rules.

September 29, 2014 Fixed inaccuracies, removed unused fields and values.

1.2.Streaming Data

Streaming data is the model which allows one to compose a continuous sequence of information of determinate length into one message. It is
promote to decrease latency and provide very high volume data routing.

1.3.Incremental Messaging

Incremental data model clearly provides less wasteful on resources. Minimum numbers of instructions are needed to update the book: add,
change, delete. An incremental approach sends only necessary data of market events and is intended to significantly reduce data content.

1.4.FIX Format

MOEX Market Data Multicast FIX/FAST Platform uses FIX message format for messages structure and syntax. Message fields are delimited
using the ASCII 01 <SOH> character. They are composed of a header, a body, and a trailer.
For more information about used messages and tags, see section 4. FIX Message Specification .

1.5.FAST Compression

FAST is a binary compression algorithm used to purpose of the optimization of FIX messages. FAST benefits include reduced bandwidth and
reduced latency. They are achieved at the expense of increased processing time and more complex processing algorithms.
The FAST Protocol uses the following approaches to compact data messages:
- implicit tagging;
- field encoding;
- presence map;
- stop bit;
- binary encoding.
These approaches assume that the structures of the transferred messages as well as encoding rules are agreed between the counter parties. This
is usually done via the exchange of machine readable XML-based FAST templates.
For more information about FAST Implementation in MOEX Market Data Multicast, see section 3.2. FAST Implementation.

1.6.Multicast Delivery

Messages are disseminated over the UDP protocol, which allows the Platform to transfer a single packet to multiple destinations and provides
lower than TCP transmission latency.

One FAST encoded FIX message does not occupy more than one UDP packet. This ensures the feed is optimized for bandwidth efficiency by
reducing the impact of multiple network headers and provides support for FAST field encoding to utilize the full suite of operators including Increment
and Copy. These operators will only be used across a set of messages within a single packet.

Currently MOEX Market Data Multicast FIX/FAST Platform does not send more than one FAST encoded FIX message in a UDP packet, but

such possibility can be added in future releases.
To minimize confusion MOEX Market Data Multicast FIX/FAST Platform sends messages from different tables of the Trading System to

different multicast groups.

1.7.Recovery

Rapid recovery is increasingly important as clients must be always in the market. Recovery processes are very useful for recipients to minimize
the probability of a data loss.

MOEX Market Data Multicast FIX/FAST Platform provides data recovery in two ways:
e Market data recovery using market snapshots — suitable for the recovery of a large-scale data loss (i.e. late joiner or major outage);
e TCP Replay of the sent messages — suitable for the recovery of a small-scale data loss (in case when some messages are lost during the transfer).

2.1. Basic Scenario - Connect before the Trade Day Started

In general, clients should start listening to MOEX Market Data Multicast FIX/FAST Platform some time before the trading day starts. This
ensures that client will start receiving actual market data without performing any recovery process.
The procedure is the following:
1. Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML-file describing the connectivity parameters
(feeds multicast addresses, ports, etc.).
2. Download the FAST template from ftp. See section 3.2.5 for the description of the FAST template.
3. Start listening Incremental Feed(s) and sequentially apply received data.

2.2.Connect after the Trade Day Started

If client starts listening to MOEX Market Data Multicast FIX/FAST Platform sometime after the trading day started, it should keep the
following procedure:
1. Download the actual multicast IP addresses configuration file from ftp. Configuration file is the XML-file describing the connectivity parameters
(feeds multicast addresses, ports, etc.).
Download the FAST template from ftp. See section 3.2.5 for the description of the FAST template.
Start listening Incremental Feed(s) and queue received data.
Start listening Recovery Feed(s), receive and apply actual market data snapshot.
Stop listening Recovery Feed(s).
Apply queued incremental data.
Continue receiving and normal processing incremental data.

Noohkown

2.3.Incremental Feeds A and B Arbitration

Data in all UDP Feeds are disseminated in two identical feeds (A and B) on two different multicast IPs. It is strongly recommended that client
receive and process both feeds because of possible UDP packet loss. Processing two identical feeds allows one to statistically decrease the probability
of packet loss.

It is not specified in what particular feed (A or B) the message appears for the first time. To arbitrate these feeds one should use the message
sequence number found in Preamble or in tag 34-MsgSegNum. Utilization of the Preamble allows one to determine message sequence number without
decoding of FAST message.

Processing messages from feeds A and B should be performed using the following algorithm:
Listen feeds A and B
Process messages according to their sequence numbers.
Ignore a message if one with the same sequence number was already processed before.
If the gap in sequence number appears, this indicates packet loss in both feeds (A and B). Client should initiate one of the Recovery process. But
first of all client should wait a reasonable time, perhaps the lost packet will come a bit later due to packet reordering. UDP protocol can’t guarantee
the delivery of packets in a sequence.

Awnh e

Example:

Feed A Feed B
34-MsgSeqNum = 59 34-MsgSeqNum = 59
34-MsgSeqNum = 60 34-MsgSeqNum = 60
34-MsgSegNum = 62 34-MsgSegNum = 61
34-MsgSeqNum = 63 34-MsgSeqNum = 62
34-MsgSegqNum = 65 34-MsgSegNum = 65

Messages are received from Feed A and Feed B.

Receive message # 59 from Feed A, process it.

Receive message #59 from Feed B, discard it, because this message was processed before from Feed A.
Receive message # 60 from Feed A, process it.

Receive message #60 from Feed B, discard it, because this message was processed before from Feed A.
Receive message #62 from Feed A, discard it and wait for message #61.

Receive message # 61 from Feed B, process it.

Receive message # 62 from Feed B, process it.

Receive message #62 from Feed A, discard it, because this message was processed before from Feed B.
Receive message # 63 from Feed A, process it.

10 Receive message #65 from Feed A, discard it and wait for message #64.

11. Receive message #65 from Feed B, discard it and wait for message #64.

12. Begin recovery process, because gap is detected. Message #64 is missed.

oSN~ E

3.1.Platform Architecture

UDP channels used to transfer market data from MOEX. UDP channels are also used for recovery process, TCP connection is used to replay
sets of lost messages, already published in the one of UDP Channels.
Following feeds are used in the system:
1. Basic:
1.1. Market Data Incremental Refresh feeds.
1.2. Instrument Definition feed.
2. Recovery:
2.1. Market Recovery feed.
2.2. TCP Replay session.

Trading System

1

MICEX Market Data Multicast FIX/FAST Platform

Orderbook
Fesed
|Incresmantal

][]

Statisiics Statistics Ordars Faad Orders

Feed Recowery [Incremental Recovery
|iscramarntal Faad relrashos) Faad
refreshas) (Emapshats| |Snapshats)

LT L L) B L)] e

Njojninj o) no

MOEX Market Data Multicast broadcast feeds:

Basic Feeds:

o Aggregated OrderBook Feeds (OBR), 20 best price levels for buy and for sell

= OrderBook Feed A
= QOrderBook Feed B
o Market Statistics Feeds (MSR)
= Statistics Feed A
= Statistics Feed B
o Active Orders List Feeds (OLR)
= QOrders Feed A
= Orders Feed B
o Trades List Feeds (TLR)
= Trades Feed A

* Trades Feed B
e Recovery Feeds:
o Aggregated OrderBook Recovery Snapshot Feeds (OBS)
= OrderBook Recovery Feed A
= OrderBook Recovery Feed B
o Market Statistics Recovery Snapshots Feeds (MSS)
= Statistics Recovery Feed A
= Statistics Recovery Feed B
o Active Orders List Recovery Snapshots Feeds (OLS)
= Orders Recovery Feed A
= Orders Recovery Feed B
o Trades List Recovery Snapshot Feeds (TLS)
= Trades Recovery Feed A
= Trades Recovery Feed B
e Instruments Definitions Feeds (IDF):
o Instruments Definitions Feed A
o Instruments Definitions Feed B
Besides publishing market data in UDP channels, MOEX Market Data Multicast FIX/FAST Platform can accept TCP requests from clients.
The replay of data from the following feeds can be requested over TCP connection:
o OrderBook Feed (OBR)
o Statistics Feed (MSR)
o Orders Feed (OLR)
o Trades Feed (TLR)
There are some restrictions for market data transfer over TCP connection:
1. market data messages may be available for limited original publishing time interval back from the time of request;
2. the number of messages, which can be requested over the one TCP session, is limited by 500 messages per request;
3. the number of messages, which can be requested through TCP-replay during the trading day, may be limited.

3.2.FAST Implementation

This part contains the description of the implementation FIX Adapted for STreaming (FAST) protocol.

3.2.1Introduction

The FIX Adapted for STreaming (FAST) Protocol has been developed as part of the FIX Market Data Optimization Working Group. FAST is
designed to optimize electronic exchange of financial data, particularly for high volume, low latency data dissemination.

FAST is a data compression algorithm that significantly reduces bandwidth requirements and latency between sender and receiver. FAST works
especially well at improving performance during periods of peak message rates. FAST extends the base FIX specification and assumes the use of FIX
message formats and data structures. FAST is a standalone specification that uses templates to encode an instance of an application type, or part
thereof, as a stream of bytes, and to inform the receiver which operations to use in decoding.

MOEX Market Data Multicast Platform distributes FIX messages which are encoded in FAST. The Preamble is found before the FAST
encoded message, and contains the sequence number (Fig 1).

Sequence Template
PMAP :
number MA D Message
FAN LY
W W W W
4 bytes N bytes N bytes
A ”
> y
Preamble FAST-message
Figure 1

3.2.2 Stop Bit Encoding
An important property of the FAST transfer encoding is the use of stop bit encoded entities. In FAST, a stop bit is used instead of FIX’s
traditional <SOH> separator byte. Thus 7 bits of each byte are used to transmit data and the eighth bit is used to indicate the end of a field.

3.2.3 Implicit Tagging

In traditional FIX messages each field takes the form “Tag=Value<SOH>" where the tag is a number representing which field is being
transmitted and the value is the actual data content. The ASCII <SOH> character is used as a byte delimiter to terminate the field. For example:

35=x|268=3 (message header)

279=0]269=2|270=9462.50|271=5|48=800123|22=8 (trade)

279=0]269=0|270=9462.00|271=175|1023=1|48=800123|22=8|346=15 (new bid 1)

279=0]269=0|270=9461.50[271=133|1023=2|48=800123|22=8|346=12 (new bid 2)

FAST eliminates redundancy with a template that describes the message structure. This technique is known as implicit tagging as the FIX tags
become implicit in the data. A FAST template replaces the tag=value syntax with “implicit tagging” as follows:

* tag numbers are not present in the message but specified in the template
* fields in a message occur in the same sequence as tags in the template
« the template specifies an ordered set of fields with operators.

3.2.4 Field Encoding Operators

FAST functions as a state machine and must know which field values to keep in memory. FAST compares the current value of a field to the
prior value of that field and determines if the new value should be constant, default, copy, delta (integer or string), increment, or tail.

Some operators rely on a previous value. A dictionary is a cache in which previous values are maintained. All dictionary entries are reset to the
initial values specified after each UDP packet. Currently, MOEX sends one message per UDP packet. In this realization delta is not needed.

A field within a FAST template will generally have one of the Field Operators: Constant, Default, Copy, Delta, Increment.

A field within a FAST template will have one of the following Data Types: String, Signed Integer, Unsigned Integer, byte Vector, and Decimal.

3.2.5 FAST Template

A FAST template corresponds to a FIX message type and uniquely identifies an ordered collection of fields. The template also includes syntax
indicating the type of field and transfer decoding to apply. A template is communicated between MOEX and client systems in XML syntax using the
FAST v1.1 Template Definition Schema maintained by FIX. The XML format is human- and machine-readable and can be used for authoring and
storing FAST templates. Session Control Protocol (SCP) will not be used.

A template consists of Field Instructions that define the fields contained in the message. Field Instructions specify the field name, tag number,
data type, field operator, and presence attribute that indicate if a field is optional or mandatory.

A sample market data template is shown below (Fig. 2). The syntax is standard XML and can be parsed using a variety of open source tools.
Valid template syntax is determined by the FAST Template Schema which is available in the FAST v1.1 specification.

103 <!-- Market Data - Incremental Refresh -->

104 <template name="X" id="6" xmlns="http://www.f{ixprotocol.org/ns/fast/td/1.1">

105 = <string name="MessageType" id="35">

10e <ceonstant value="X"/>

107 - </string>

108 <string name="ApplVerID" id="1128"><ccpy/></string>

108 <string name="SenderCompID" id="49"><cecpy/></string>

110 <uInt32 name="MagSegNum" id="34"><increment/></ulInt3Z>

111 <uInté4 name="SendingTime" id="52"><ccpy/></ulnté4>

112 <byteVecter name="MessageEncoding” id="347" presence="optional"><default/></byteVector>
112 [H <sequence name="GroupMDEntries">

114 i <length name="NoMDEntries" id="268"/>

115 : <ulnt32 name="MDUpdateAction" id="279"><ccpy/></ulnt32>

116 i <string name="MDEntryType" id="263" presence="optional"><copy/></string>

117 <byteVector name="MDEntryID" id="278" presence="optional"><copy/></byteVector>

118 i <byteVector name="Symbol" id="55" presence="optional'><copy/></byteVector>

115 i <int32 name="RptSeq" id="83" presence="optional"><cepy/></int32>

120 <decimal name="MDEntryPx" id="270" presence="optional"><ccpy/></decimal>

121 <decimal name="MDEntrySize" id="271" presence="optional"><copy/></decimal>

122 <uInt32 name="MDEntryDate" id="272" presence="optional"><ceopy/></ulnt3Z>

123 <uInt32 name="MDEntryTime" id="273" presence="optional"><ceopy/></ulnt32>

124 <byteVector name="TradingSessionID" id="336" presence="optional"><copy/></byteVector>
125 <byteVector name="QuoteCondition" id="276" presence="optional"><cecpy/></byteVector>
128 <byteVector name="TradeCondition" id="277" presence="optional"><ccpy/></byteVector>
127 <uInt32 name="OpenCloseSettleFlag" id="286" presence="optional"><default/></ulnt3z>
128 <decimal name="NetChgPrevDay" id="451" presence="optional"><copy/></decimal>

129 =] H <decimal name="Yield" id="236" presence="optional"><copy></decimal>

130 i <decimal name="AccruedInterestAmt"” id="5384" presence="optional"><copy/></decimal>
131 <decimal name="ChgFromWAPrice" id="5510" presence="optional"><cecpy/></decimal>

132 i <decimal name="ChgOpenInterest” id="5511" presence="optional"><copy/></decimal>
133 <int32 name="TotalNumOfTrades" id="6139" presence="optional"><ceopy/></int32>

134 i <decimal name="TradeValue" id="6143" presence="optional"><copy/></decimal>

135 i <int32 name="OfferNbOr" id="9168" presence="optional"><copy/></int32>

136 <int32 name="BidNbOr" id="9163" presence="optional"><ceopy/></int32>

137 i <decimal name="ChgFromSettlmnt" id="9750" presence="optional"><copy/></decimal>
138 i <int32 name="SumQtyOfBest"” id="10503" presence="optional"><copy/></int32>

139 H <string name="OrderSide" id="10504" presence="optional"><copy/></string>

140 i <string name="OrdStatus" id="10505" presence="optional"><ccpy/></string>

141 i <decimal name="OrdBalance" id="10506" presence="optional"><cecpy/></decimal>

142 H <decimal name="OrdValue" id="10507" presence="optional"><ccpy/></decimal>

143 i <decimal name="MinCurrPx" id="10509" presence="optional"><copy/></decimal>

144 <uInt3Z name="MinCurrPxChgTime" id="10510" presence="optional"><cecpy/></ulnt3zZ>
145 & </sequence>

148 r </template>

Figure 2

3.2.6 Decoding overview

The FAST template contains the instructions to decode and reconstruct compressed message data into the FIX format and also supports
repeating groups (sequences) that allow a single message to convey multiple instructions (i.e. book update, trade, high/low, etc.).

Decoding process include following steps:

Encoded FIX/FAST
message

Network Transport Layer

Y

Transfer Decoding

Y

)
)
)
)

h 4

Build FIX message

e 6 & 6

h 4

(Process FIX Message >

Figure 3
e Transport.
Client System receives encoded FAST message.
e Transfer decoding.
Transfer decoding is the initial step that converts data from the FAST 7-bit binary format. It includes:
= Identify template;

Extract binary encoded bits;
Map bits to fields per template.

e Field decoding.
Field decoding is the second part of the decompression process that reconstructs data values according to template-specified operations.
Field decoding operations are assigned per field within the template; decoding reinstates data as indicated by the template.

e Build FIX message.

It includes:

Decoding begins with the identification of the Pmap bit for each field.

The encoded FAST 7-bit binary values are obtained.

Then the encoded FAST 7-bit binary values are de-serialized based on the data type specified in the template.
The decoder maintains the state of prior values for each field throughout decoding and applies them for fields having operators of Delta,

Copy, or Increment.
Obtain fully decoded values.

e Process FIX message.

3.2.7 Sample Template

Template Syntax

Table 1

Use and Description

1 <template name="X" id="6" Provides the template name and template identifier.
xmlns="http://www.fixprotocol.org/ns/fast/td/1.1">
2 <string name="MessageType" id="35"> Field instruction for Message Type defined as a string with identifier = 35
<constant value="X" /> corresponding to the FIX tag number. MessageType has a constant field operator with
</string> a value of X which indicates the FI)X message type—in this case Market Data
Incremental Refresh.
3 <string name="ApplVerID" id="1128"><copy/></string> Field instruction for ApplVerlID defined as a string with an identifier = 1128
corresponding to the FIX tag number. ApplVerID has a copy field operator.
4 <string name="SenderCompID" id="49"><copy/></string> Field instruction for SenderComplID defined as a string with identifier = 49
corresponding to the FIX tag number. SenderComplD has a copy field operator.
5 <ulnt32 name="MsgSegNum" id="34"><increment/></ulnt32> Field instruction for MsgSegNum defined as an unsigned integer with identifier = 34
corresponding to the FIX tag number. MsgSeqNum has an increment field operator.
6 <ulnt64 name="SendingTime" id="52"><copy/></ulnt64> Field instruction for SendingTime defined as an unsigned integer and with identifier =
52 corresponding to the FIX tag number. SendingTime has a copy field operator.
7 <byteVector name="MessageEncoding" Field instruction for MessageEncoding defined as a byte vector and with identifier =

10

11

12

13

14

15

16

17

18

19

20

21

22

id="347"presence="optional"><default/></byteVector>

<sequence name="GroupMDEntries">
<length name="NoMDEntries" id="268"/>

<ulnt32 name="MDUpdateAction" id="279"
presence="optional"><copy/></ulnt32>

<string name="MDEntryType" id="269"
presence="optional"><copy/></string>

<byteVector name="MDEntryID" id="278"
presence="optional"><copy/></byteVector>

<byteVector name="Symbol" id="55"
presence="optional""><copy/></byteVector>
<int32 name="RptSeq" id="83" presence="optional"><copy/></int32>

<decimal name="MDEntryPx" id="270"
presence="optional"><copy/></decimal>

<decimal name="MDEntrySize" id="271"
presence="optional"><copy/></decimal>

<ulnt32 name="MDEntryDate" id="272"
presence="optional"><copy/></ulnt32>

<ulnt32 name="MDEntryTime" id="273"
presence="optional"><copy/></ulnt32>

<byteVector name="TradingSessionID"
id="336"presence="optional"><copy/></byteVector>

<byteVector name="QuoteCondition™ id="276"
presence="optional"><copy/></byteVector>

<byteVector name="TradeCondition" id="277"
presence="optional"><copy/></byteVector>

<byteVector name="0penCloseSettIFlag"
id="286"presence="optional"><copy/></byteVector>

decimal name="NetChgPrevDay" id="451"
presence="optional"><copy/></decimal>

347 corresponding to the FIX tag number. MessageEncoding has a default field
operator.

Sequence instruction demarks the beginning of the MDEntries repeating group. The
sequence includes a length field called ‘NoMDEntries’ that specifies the number of
repeating groups present in the message.

Field instruction for MDUpdateAction defined as an unsigned integer and identifier =
279 corresponding to the FIX tag number. MDUpdateAction has a copy field
operator.

Field instruction for MDEntryType which is defined as a string and has an identifier =
269 which corresponds to the FIX tag number. MDEntryType has a copy field
operator.

Field instruction for MDEntrylD which is defined as a byte vector and has an
identifier = 278 which corresponds to the FIX tag number. MDEntryID has a copy
field operator.

Field instruction for Symbol which is defined as a byte vector and has an identifier =
55 which corresponds to the FIX tag number. Symbol has a copy field operator.

Field instruction for RptSeq defined as a signed integer with identifier = 83
corresponding to the FIX tag number. RptSeq has a copy field operator.

Field instruction for MDENtryPx defined as a decimal with identifier = 270
corresponding to the FIX tag number. MDEnNtryPx has a copy field operator.

Field instruction for MDEntrySize defined as a decimal with identifier = 271
corresponding to the FIX tag number. MDEntrySize has a copy field operator.

Field instruction for MDEntryDate defined as an unsigned integer and identifier = 272
corresponding to the FIX tag number. MDEntryDate has a copy field operator.

Field instruction for MDEntry Time defined as an unsigned integer and identifier = 273
corresponding to the FIX tag number. MDEntryTime has a copy field operator.

Field instruction for TradingSessionID which is defined as a byte vector and has an
identifier = 336 which corresponds to the FIX tag number. TradingSessionlID has a
copy field operator.

Field instruction for QuoteCondition which is defined as a byte vector and has an
identifier = 276 which corresponds to the FIX tag number. QuoteCondition has a copy
field operator.

Field instruction for TradeCondition which is defined as a byte vector and has an
identifier = 277 which corresponds to the FIX tag number. TradeCondition has a copy
field operator.

Field instruction for OpenCloseSettIFlag which is defined as a byte vector and has an
identifier = 286 which corresponds to the FIX tag number. OpenCloseSettlFlag has a
copy field operator.

Field instruction for NetChgPrevDay defined as a decimal with identifier = 451
corresponding to the FIX tag number. NetChgPrevDay has a copy field operator.

23 <decimal name="AccruedInterestAmt" Field instruction for AccruedinterestAmt defined as a decimal with identifier = 5384
id="5384"presence="optional"><copy/></decimal> corresponding to the FIX custom tag number. AccruedinterestAmt has a copy field
operator.
24 <decimal name="ChgFromWAPrice" id="5510" Field instruction for ChgFromWAPrice defined as a decimal with identifier = 5510
presence="optional"><copy/></decimal> corresponding to the FIX custom tag number. ChgFromWAPrice has a copy field
operator.
25 <int32 name="TotalNumOfTrades" id="6139" Field instruction for TotaINumOfTrades defined as a signed integer with identifier =
presence="optional"><copy/></int32> 6139 corresponding to the FIX custom tag number. TotalNumOfTrades has a copy
field operator.
26 <decimal name="TradeValue" id="6143" Field instruction for TradeValue defined as a decimal with identifier = 6143
presence="optional"><copy/></decimal> corresponding to the FIX custom tag number. TradeValue has a copy field operator.
27 <decimal name="Yield" id="236" presence="optional"><copy/></decimal> Field instruction for Yield defined as a decimal with identifier = 236 corresponding to
the FIX tag number. Yield has a copy field operator.
28 <int32 name="0fferNbOr" id="9168" Field instruction for OfferNbOr defined as a signed integer with identifier = 9168
presence="optional"><copy/></int32> corresponding to the FIX custom tag number. OfferNbOr has a copy field operator.
29 <int32 name="BidNbOr" id="9169" presence="optional"><copy/></int32> Field instruction for BidNbOr defined as a signed integer with identifier = 9169
corresponding to the FIX custom tag number. BidNbOr has a copy field operator.
30 <string name="0OrderSide" id="10504" Field instruction for OrderSide defined as a string with an identifier = 10504.
presence="optional"><copy/></string> OrderSide has a copy field operator.
31 <string name="0OrderStatus" id="10505" Field instruction for OrderStatus defined as a string with an identifier = 10505.
presence="optional"><copy/></string> OrderStatus has a copy field operator.
32 <decimal name="MinCurrPx" id="10509" Field instruction for MinCurrPx defined as a decimal with identifier = 10509.
presence="optional"><copy/></decimal> MinCurrPx has a copy field operator.
33 <ulnt32 name="MinCurrPxChgTime" Field instruction for MinCurrPxChgTime defined as an unsigned integer and identifier
id="10510"presence="optional"><copy/></ulnt32> =10510. MinCurrPxChgTime has a copy field operator.
3.3.Data Feeds

The use of incremental FIX market data messaging in combination with FAST compression produces highly optimized feeds which are
distributed in UDP channels. Each Feed is transferred over separate multicast-address. Feeds have the following structure:
o OrderBook Feeds
= OrderBook Feed A
= OrderBook Feed B
o Statistics Feeds

= Statistics Feed A
= Statistics Feed B
o Orders Feeds
= QOrders Feed A
= Orders Feed B
o Trades Feeds
= Trades Feed A
= Trades Feed B
o Instruments Feeds
= Instruments Definitions Feed A
= Instruments Definitions Feed B
In Feeds A and B the equal market data information is sent. It provides low probability of packets loss, and reduce the need in recovery
processes.

3.3.1 Instruments Feed

Instruments Definitions Feed A/B provides the security main parameters in a Security Definition (d) message and changes to the definition
and/or identity of the security. In this feeds FIX messages encoded to FAST are sent repeatedly with fixed time interval. One FIX message contains
information about one security.

Message example:

8=FIXT.1.1/9=400|35=d|1128=9|34=1551|460=5|423=2|911=1572|49=MOEX|55=VRSBP|48=RU000AODPG75[22=4|46 1=EPX XXX |16 7=PS|
107=Voronezh EnergoSbyt.Comp(pref)|15=RUB|120=RUB|5217=2-01-55029-
E|5385=FOND]|969=0.001|5508=0.4|7595=18716678|350=54|351="Bopouex.3ueproco.komn" OAO am|5382=20|5383=BoporduC6m|52=20110503-
08:29:32.968|870=2|871=27|872=3|871=8|872=0]|1310=1|561=1|1309=1|336=SMAL|10=000|

Note: each security symbol (55) may be traded in several trading boards that differ by rules. Tag 336 indicates <Board>. There may be multiple
different Board values for each security symbol. Please treat each combination of tags 55 and 336 in Security definition as a separate entity with
separate stream of market data updates.

3.3.2 OrderBook, Market Statistics, Orders, and Trades Feeds
The following market data is also distributed in separate feeds:
e OrderBook Feed A/B — changes in aggregated ORDERBOOK table.
There are three data blocks included in OrderBook feeds:
1. Add - to create/insert a new price at a specified price level (MDUpdateAction(279) =0);
2. Change - change quantity for a price at a specified price level (MDUpdateAction (279) = 1);
3. Delete - remove a price at a specified price level (MDUpdateAction (279) = 2).

All data blocks are issued for a specified entry type MDEntryType (269) ='0' (Bid), '1' (Offer), ‘J° (Empty book).
Statistics Feed A/B — market statistics, changes in SECURITIES table.
Statistics Feeds also include Add, Change, and Delete blocks. Entry types are:
'0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);

'3' (Index Value);

'4' (Opening Price);

'5' (Closing Price);

‘7' (Trading Session High Price);

'8' (Trading Session Low Price);

'9' (Trading Session VWAP Price);

‘A’ (Imbalance)

'B' (Trade Volume, expressed in number of securities);

"J' (Empty book);

'N' (Session high bid);

'O’ (Session low offer);

'Q' (Auction Clearing Price);

‘W’(Closing auction price);

‘c’(Closing auction volume);

‘f” (Volume of buy market orders in closing auction);

‘g’(Volume of sell market orders in closing auction);

'I' (Last bid price);

'J' (Last offer price);

'h' (Open period price);

'k’ (Close period price);

1" (Market price 2); on FX market — FX fixing price as calculated between 11:59 and 12:00 Moscow time.
'm' (Market price); On FX market — FX fixing price

‘o' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international FX fixing price

' (Official close price);

'v' (Total bid volume);

‘W' (Total offer volume);
's' (Dark pool Auction price)
X' (Dark Pool Auction volume)
‘y” (Accrued coupon yield on the settlement date, in rubles per unit of financial instrument)
'u’ (Duration);.
e Orders Feed A/B — changes in ORDERS table.
Orders Feeds also include Add, Change, and Delete blocks. Entry types are: ‘0" (Bid), '1' (Offer), ‘J* (Empty book)
e Trades Feed A/B — changes in TRADES table.
Trades Feeds include only Add block (MDUpdateAction(279) =0) and custom entry type MDEntryType (269) = 'z' (Trade List).
The Market Data Incremental Refresh (MsgType (35) = X) message encoded to FAST is used for market data transfer. These allows one to
update applicable parts of information as necessary, as opposed to refreshing all market data each time there is an update.
Trading Session Status (h) message is used to represent connection status with appropriate MOEX market. When status of connection changed
this message is sent into UDP channel. When status of a security is changed Security Status (f) message is sent into UDP channel.

3.3.3 Market Recovery Feeds

Each Market Recovery feed (OrderBook, Statistics, Orders, Trades) sends the Market Data Snapshot / Full Refresh (MsgType (35) = W)
messages encoded to FAST. One message contains information about one security. Information in Market Data Snapshot / Full Refresh message
includes status of the connection with market (TradSesStatus (340) tag) and changes in status of a security (MDSecurityTradingStatus (1682) tag).

Market Recovery feeds should be used for recovery purposes only. Once the client system has retrieved recovery data, it recommended to stop

listening to the Market Recovery feeds.

3.3.4 TCP Replay

The TCP replay component allows one to request a replay of a set of messages already published in the one of UDP Channels.

The request is submitted by FIX Market Data Request message (35=V) with range of sequence numbers and UDP Channel identifier.

When establishing TCP-session, client should send the FIX Logon message, always with sequence number 1. When requesting the lost data
client should specify the channel ID. Channel IDs can be found in MOEX Market Data Multicast FIX/FAST Platform configuration file available on
ftp. They are OLR (for Order List feed), OBR (for OrderBook feed), TLR (for Trade List feed), MSR (for Market Statistics feed).

The length of the message in TCP stream can be found in 4-bytes number before each message being transmitted:

Message Template
b PMAP)
length M D Message
L FY FaY

w W W W

4 bytes W bytes N bytes
v - W

Message length FAST-message

Client can request the limited number of messages. Current limitation is maximum 500 message per request.

Request is sent through a new TCP connection initiated by client. The responses are sent by MOEX Market Data Multicast FIX/FAST through
this same connection and the connection is then closed by MOEX Market Data Multicast FIX/FAST once the replay is complete.

TCP Replay should only be used if other options are unavailable. This method has low performance.

3.4.Recovery

MOEX Market Data Multicast FIX/FAST Platform disseminates Market Data in all feeds over two UDP subfeeds: Feed A and Feed B. In
Feeds A and B the identical messages are sent. It lowers the probability of packets loss and provides the first level of protection against missed
messages.

Sometimes, messages may be missed on both feeds, requiring a recovery process to take place. Message loss can be detected using the FIX
message sequence numbers (tag MsgSeqNum (34)), which are also found in the Preamble. The message sequence number is an incrementing number;
therefore, if a gap is detected between messages in the tag MsgSeqNum (34) value, or the Preamble sequence number, this indicates a message has
been missed. In addition, tag RptSeq (83) can be used to detect a gap between the messages at the instrument level. In this case client system should
assume that market data maintained in it is no longer correct and should be synchronized to the latest state using one of the recovery mechanisms.

MOEX Market Data Multicast FIX/FAST Platform offers several options for recovering missed messages and synchronizing client system to
the latest state. Market Recovery process together with Instruments Replay Feed is the recommended mechanism for recovery. TCP Replay provides
less performance mechanism recommended only for emergency recovering of small amount of lost messages when other mechanisms cannot be used
for some reason. Instrument level sequencing and natural refresh can be utilized to supplement the recovery process.

Notes:

e We strongly recommend that client systems process both the A and B Incremental UDP feeds. UDP Feed A and UDP Feed B provide the first
level of protection against missed messages.
e We recommend Market Recovery as a primary recovery option.

3.4.1 Market Recovery Overview

This recovery method is preferable to use for large-scale data recovery and for late joiners. Recovery feeds contains Market Data -
Snapshot/Full Refresh (W) messages. The sequence number (LastMsgSegNumProcessed(369)) in the Market Data - Snapshot/Full Refresh (W)
message corresponds to the sequence number (MsgSegNum(34)) of the last Market Data - Incremental Refresh (X) message in the corresponding feed.
Instrument level sequence number (RptSeq(83)) in Market Data - Snapshot/Full Refresh (W) message correspond to the sequence number
(RptSeq(83)) in the MDEntry from last Market Data - Incremental Refresh (X) message. Thus tag MsgSegNum(34) shows the gap at the messages
level, tag RptSeq(83) shows gap at the instrument level.

After value of RptSeq(83) tag from Market Data - Incremental Refresh (X) becomes more than value of RptSeq(83) tag from Market Data -
Incremental Refresh (X), market data becomes actual.

After value of MsgSegNum(34) from Market Data - Incremental Refresh (X) message becomes more than value of tag
LastMsgSegqNumProcessed(369) from Market Data - Snapshot/Full Refresh (W) message, market data becomes actual.

Messages sequence numbers begins from #1 in Market Data - Snapshot/Full Refresh (W) messages in each cycle.

Last Market Data - Snapshot/Full Refresh (W) message in Recovery Feeds sends with tag LastFragment (893) ="Y".

Clients should keep queuing real-time data until all missed data is recovered. The recovered data should then be applied prior to data queued.

Steps during Recovery process corresponds to the steps 4 — 7 from point 2.2.

Since clients have retrieved recovery data, it is recommended to stop listening Market Recovery feeds.

3.4.2 Recovering Data - Process
The recovering data process should be applied to affected feeds only. Unaffected feeds can be processed as usual. The process can follow two
paths: queuing current data while recovering or processing current data while recovering.

3.4.2.1.1. Queuing
This process implies the queuing the Incremental Market Data from Incremental Feeds while receiving Market Data Snapshots from Recovery
Feeds. In order to avoid an excessive number of queued messages, it is recommended to process snapshots and apply the applicable incremental feed as
the snapshots arrive.
1. Identify Feed(s) in which the client system is out of sync.
2. Listen to and queue the Incremental Market Data from the affected Feed(s).
3. Listen to the Market Recovery Feed corresponding to the affected Incremental Feed(s), receive and apply snapshots.
4. Verify that all snapshots have been received for a given Market Recovery feed, using one of the following approaches:
a. Message sequence numbers in each loop of snapshots start from 1. So to determine the end of the loop one can wait until the next
message with 34-MsgSegNum = 1 arrives.
b. Snapshots in the Recovery Feeds are sent in the same order as Security Definitions in Instruments Feed. Tag 893-LastFragment in
the W-message indicates if it is the last fragment of the snapshot on the instrument. Receiving the last fragment of the last
instrument means the receiving the last snapshot in the loop.

5. Apply all queued incremental data in the sequence, where
a. tag 34-MsgSegNum (or the Preamble sequence number) is greater than the lowest value for tag 369-LastMsgSeqNumProcessed,;
OR
b. tag 83-RptSeq from the Market Data Incremental — Refresh message is greater than the lowest value for tag 83-RptSeq on the
Market Recovery feed.
6. Continue normal processing

3.4.2.1.2. Concurrent Processing
This process implies the possibility to resume normal processing of an instrument while other affected instruments are still being recovered.
1. ldentify Feed(s) in which the client system is out of sync.
2. Listen to the Incremental Market Data from the affected Feed(s) and optionally attempt a natural refresh.
3. Listen to the Market Recovery Feed corresponding to the affected Incremental Feed(s)
4. For each instrument:
a. compare tag 369-LastMsgSegqNumProcessed on the Market Recovery feed to tag 34-MsgSeqNum (or the Preamble sequence
number) on the Incremental Market Data feed and verify that the value for tag 34-MsgSegNum is not lower;
OR
b. compare tag 83-RptSeq on the Market Recovery feed to tag 83-RptSeq on the Incremental Market Data feed and verify that the
value for tag 83-RptSeq on the Incremental Market Data feed is not lower.
5. Continue normal processing

3.4.2.1.3. Instrument Level Sequencing
Market Data Incremental Refresh messages contain instrument sequence numbers (tag 83-RptSeq), in addition to message sequence numbers
(tag 34-MsgSeqNum). Every repeating group instance of a market data entry contains an incrementing sequence number (tag 83-RptSeq) that is
associated with the instrument for which the data is present in the block.
Client systems can keep track of the instrument sequence number (tag 83-RptSeq) for every instrument by inspecting incoming data and
determining whether there is a gap in the instrument sequence number.

. If there is a gap in the instrument sequence number, it indicates that data was missed for the instrument when message loss occurred.
. If there is no gap, the data can be used immediately, and it also indicates that the book for this instrument still has a correct, current
state.

3.4.2.14. Natural Refresh
The client system must track the state of the book at all times with the FIX Market Data Incremental Refresh messages. It is possible, though
not guaranteed, that a set of these book update messages can be used to construct the current, correct state of a book without prior book state

knowledge. This process called Natural Refresh. Prior to beginning a natural refresh, the entire book should be emptied. Natural refresh assumes no
prior knowledge of book state. Natural Refresh works best for aggregated orderbook feed and for highly liquid securities.

3.4.3 TCP Replay

If market data from OrderBook, Statistics, Orders, and Trades Feeds was missed, it can be recovered over the TCP historical replay component
using the sequence number range. TCP Replay is a low performance recovery option and should only be used if other options are unavailable or for
small-scale data recovery. Number of messages which can be requested by client during TCP connection is limited.

TCP replay include follows:
1. Establish TCP connection with MOEX Market Data Multicast.
2. Send FIX message Logon(A) with sequence numder 1 to server. After successful authorization server sends the FAST-encoded Logon(A)
message.
3. Send Market Data Request (V) message with:
a. Tag ApplID (1180) - the channel ID (as specified in server configuration file available on ftp: OLR, OBR, TLR, or MSR).
b. Range of sequence numbers - ApplBegSeqNum(1182) and ApplEndSeqNum (1183) tags.
If request is correct, server sends FAST messages according to requested sequence numbers.
If request is incorrect, server sends FAST Logout (5) message with reject reason.
After server responses, the connection is closed.
Server will process only first user request, second and others will be ignored. If the server does not receive Market Data Request within an
established timeout interval after logon, the connection is closed.

This part contains the description of FIX 5.0 SP2 protocol messages, component blocks and fields which are supported by MOEX Market Data
Multicast.

This specification is based on FIX 5.0 SP2 standard for application-level messages, FIXT 1.1 for session-level messages (http://fixprotocol.org/)
and adapted to MOEX’s purposes. It’s assumed that users have basic knowledge about FIX standard.

Only messages, component blocks and fields which are described in this document are supported by MOEX Market Data Multicast. Note that
all fields which are required or conditionally required by FIX 5.0 SP2 standard but absent in MOEX Interface specification are optional and will be
ignored by MOEX. All field values which are valid according to FIX 5.0 SP2 standard but aren’t described in this document will be considered as
invalid and incoming messages with such values will be rejected.

4.1.FIX Component Blocks

4.1.1 Standard Message Header

Table 2

Field name [Valid values Comments

AppVerlD Y String (1) ‘9’ (FIX50SP2) Specifies the service pack release being applied for application-level messages.

35 MsgType Y String (10) Defines message type.
Always unencrypted.

49 SenderComplD Y String (12) Assigned value used to identify firm sending message.
Always unencrypted.
If this message is sent to MOEX TCP replay server, SenderComplD may contain
arbitrary string.

34 MsgSegNum Y SeqNum Integer message sequence number.

52 SendingTime Y UTCTimestamp Time of message transmission (expressed in UTC).
YYYYMMDD-HH:MM:SS.sss

347 MessageEncoding N String(11) 'UTF-8' (Unicode) Type of message encoding (non-ASCII characters).

http://fixprotocol.org/

" Required if any "Encoding"” fields are used.

4.1.2 Instrument

Field name

Valid values

Table 3

Comments

55 Symbol String(12) Ticker symbol. The MOEX internal instrument identifier,
SecCode.
Note: an instrument with a given SecCode may be traded in
several trading boards (SecBoard). You should use each Symbol
(55)+TradingSessionID (336) combination as an individual
security with own order book and list of trades.
48 SecuritylD N String Security identifier value of SecuritylDSource (22) type.
22 SecuritylDSource | N String ‘4" (ISIN) Identifies class or source of the SecuritylD (48) value.
460 Product N int '3' (CORPORATE); Indicates the type of product the security is associated with.
'4' (CURRENCY);
'5' (EQUITY);
'6' (GOVERNMENT);
7' (INDEX);
‘10° (MORTGAGE)
'11' (MUNICIPAL);
‘12’ (OTHER);
'13' (FINANCING).
461 CFlICode N String Indicates the type of security using 1SO 10962 standard,
Classification of Financial Instruments (CFI code) values.
167 SecurityType N String 'CORP' (Corporate Bond); Indicates type of security.

'FOR' (Foreign Exchange Contract);
'CS' (Common Stock);

'PS' (Preferred Stock);

'EUSOV' (Euro Sovereigns);'

MLEG' (Multileg Instrument);
'MUNI' (Municipal bonds).

RDR — Russian depositary receipt
ETF — exchange traded fund

‘COFP’ (Certificate Of Participation)

'XCN' (Extended Comm Note)
'STRUCT" (Structured Notes)
'WAR' (Warrant)

541 MaturityDate N LocalMktDate Maturity date for bonds
224 CouponPayment | N LocalMktDate Date interest is to be paid.
Date

223 CouponRate N Percentage The rate of interest.

107 SecurityDesc N String Security description.

350 EncodedSecurity | N Length Byte length of encoded (non-ASCII characters)

DescLen EncodedSecurityDesc (351) field.
351 EncodedSecurity | N data Russian language (non-ASCII characters) name for the security.
Desc Encoded format is specified via the MessageEncoding (347)
field. If used, the ASCII (English) representation should also be
specified in the SecurityDesc (107) field.
5217 StateSecurityID N String State Securities Identification Number.
5382 EncodedShortSec | N Length Byte length of encoded (non-ASCII characters)
urityDescLen EncodedShortSecurityDesc (5383) field.
5383 EncodedShortSec | N data Short (non-ASCII characters) security name in Russian
urityDesc language. Field encoding format specified via the
MessageEncoding (347) field.

5556 BaseSwapPx N Price Base SWAP price.

5558 BuyBackPx H Price Buy back price. Early redemption buyback price for bonds. If
defined, the field BuyBackDate must be filled. If defined, yield
calculation is based on this date and price.

5559 BuyBackDate H LocalMktDate Buy back date. Early redemption of bonds Buyback date. If
defined, yield calculation is based on this date.

4.1.3 Instrument Extension

Field name

NolnstrAttrib

Valid values

Table 4

Comments

Number of repeating InstrAttribType (871) entries.

NuminGroup

=> 871 | InstrAttribType N int '8' (Coupon period); Code to represent the type of instrument attribute.
‘27" (Instrument Price Precision). Required if NolnstrAttrib (870) > 0.
=>872 | InstrAttribValue N String Attribute value appropriate to the InstrAttribType (871) field.

4.1.4 Market Segment

Field name

Valid values

Table 5

Comments

NoMarketSegme NumlInGroup Number of Market Segments on which a security may trade.
nts
=>561 RoundLot Qty The trading lot size of a security.
=> 1309 NoTradingSessio NumlInGroup Allows trading rules to be expressed by trading session.
nRules
=>=>336 | TradingSessionl String(4) Identifier for Trading Session. Used to represent SECBOARD.
D Note: an instrument with a given SecCode may be traded in
several trading boards (SecBoard). You should use each Symbol
(55)+TradingSessionlD (336) combination as an individual
security with own order book and list of trades.
=>=>625 | TradingSessionS String NA — No trading Indicates the trading period
ublD O — Opening auction period Notes:
C — Closing period e Period is empty before the trading start and after the
F — Final closing period trading is closed.
N — Normal trading period e Switching between periods typically involves a short
L — Closing auction period stop in trading, in which period is not defined
| — Discrete auction period (625=NA)
D — Dark pool auction period e The sequence and schedule of periods depends on board
E — Trading at the closing auction price period code and on market conditions as defined by the
Exchange Trading rules.

e Period value of this component block indicates a period
that is running at the start of Security definition
publishing cycle. Security status updates that come after
Security definitions publishing cycle start should
replace tag 625 values from Security definitions feed.

=>=> 326 | SecurityTrading int 18 — Not available for trading Trading status for a security
Status 118 — Opening auction
18 — Trading closed Notes:
103 — Closing period e abreak in any period is indicated by 326=2 and period

2 — Break in trading identifier in tag 625.

17 — Normal trading e Not available for trading and Trading Closed are

102 — Closing auction different technological states in the Trading system.

106 — Dark pool auction However they both disable trading activity and thus

107 — Discrete auction have equal values of tag 326.

120 — Trading at Closing auction price e Trading status value of this component block indicates a

trading statsus that existed at the start of Security
definition publishing cycle. Security status updates that
come after Security definitions publishing cycle start
should replace tag 625 values from Security definitions
feed.

=>=>9680 | OrderNote N Char Level of listing

4.2.FIX Session-Level Messages

4.2.1 Logon (A)
Logon message from customer to MOEX:

Table 6

Field name Valid values Comments

<Standard Message Header> Y MsgType ="'A'

553 Username Y* String Userid or username.

554 Password | Y* String User password. \

1137 DefaultApplVerlD Y String ‘9’ (FIX50SP2) Specifies the service pack release being applied, by default, to
message at the session level.

Logon message from MOEX to customer:
Table 7

Field name Valid values Comments

<Standard Message Header> Y MsgType ="'A'

108 HeartBtInt Y int Heartbeat interval (seconds).

1137 DefaultApplVerlD Y String ‘9’ (FIX50SP2) Specifies the service pack release being applied, by default, to
message at the session level.

4.2.2 Logout (5)
Table 8

Field name Valid values Comments

<Standard Message Header> Y MsgType ='5'

58 \ Text N String Logout reason.

4.2.3 Heartbeat (0)

Table 9

Field name Valid values Comments

<Standard Message Header> Y \ MsgType ='0'

4.3. FIX Application-Level Messages

4.3.1 Security Definition (d)
Table 10

Field name Valid values Comments

<Standard Message Header> | Y MsgType ='d'

911 | TotNumReports Y int Total number of Security Definition messages in a cycle.

component block Y The <Instrument> component block contains all the fields commonly used
<lInstrument> to describe a security or instrument.

component block N The <InstrumentExtension> component block identifies additional security
<Instrument Extension> attributes that are more commonly found for Fixed Income securities.

15 | Currency N Currency Identifies currency used for price.

component block <Market N Contains all the security details related to listing and trading the security,
Segment> including its trading status and trading period as they were at the start of
Security Definitions publishing cycle. This allows late joiners to get current
security trading state if they have missed earlier Security status (35=f)

messages.
120 SettlCurrency N Currency Currency code of settlement denomination.
423 PriceType N int '1' (Percentage); Code to represent the price type.
'2' (Per unit). Note: for REPO with CCP this tag value is 1, but indicates the REPO rate,
not the price of underlying security (bond or share)
64 SettIDate N* LocalMktDate Specific date of trade settlement (SettlementDate) in YYYYMMDD format

For Equities and FX in orders driven market: indicates settlement date
For Equities in quote driven market (negotiated): indicates default
settlement date. Actual date may vary and is indicated for each trade in the
Trade List feed

For FX swaps: indicates settlement date for reverse trade.

5385 MarketCode N String Code of market where instrument is traded.
Note: MarketCode indicates a group of trading boards (SECBOARDS)
with similar trading rules.

969 MinPricelncre | N float Minimum price increase for a given exchange-traded Instrument.
ment

5508 FaceValue N Amt Face value of security.

5850 OriglssuueAmt | N Int Number of placed securities in issue

7595 NoShareslssued | N Qty The number of shares issued.

4.3.2 Security Status (f)

Security Status messages indicate changes in current Trading status and period for a security. Please note that publishing multiple 35=f messages in traffic-shaped feeds
takes some time, and that this publishing is done in parallel with publishing updates in incremental feeds. Parallel publishing may result in getting an incremental update from new
trading state slightly before receiving the status change for a security, or getting an incremental update from previous trading state after the trading status change.

Table 11

Field name Valid values Comments

<Standard Message Header>

83
55

336

625

326

5509

RptSeq
Symbol

TradingSessionID

TradingSessionSu
bID

SecurityTradingSt
atus

AuctionIndicator

< <|=<

int
String

String

String

int

Boolean

NA — No trading

O — Opening auction period

C — Closing period

F — Final closing period

N — Normal trading period

L — Closing auction period

| — Discrete auction period

D — Dark pool auction period

E — Trading at the closing auction price
period

18 — Not available for trading

118 — Opening auction

18 — Trading closed

103 — Closing period

2 — Break in trading

17 — Normal trading

102 — Closing auction

106 — Dark pool auction

107 — Discrete auction

120 - Trading at Closing auction price

"Y' (Yes);
'N' (No).

MsgType = 'f'

Sequence number of message within report series.

Ticker symbol. The Moscow Exchange internal instrument identifier,
SecCode.

Identifier for Trading Session. Used to represent SECBOARD.

Note: an instrument with a given SecCode may be traded in several
trading boards (SecBoard). You should use each Symbol
(55)+TradingSessionID (336) combination as an individual security
with own order book and list of trades.

Indicates the trading period

Notes:

e Period is empty before the trading start and after the trading is
closed.

e Switching between periods typically involves a short stop in
trading, in which period is not defined (625=NA)

e The sequence and schedule of periods depends on board code
and on market conditions as defined by the Exchange Trading
rules.

Trading status for a security

Notes:

e abreak in any period is indicated by 326=2 and period
identifier in tag 625.

o Not available for trading and Trading Closed are different
technological states in the Trading system. However they
both disable trading activity and thus have equal values of tag
326.

Indicates that the primary distribution auction is being held for the
security. Primary distribution auction data is currently not published in
the feed.
Notes:

e 5509=N for ALL other auction types.

e Boolean values are encoded in FAST messages as binary

| | | | integers: 1 for Y, and O for N.

4.3.3 Trading Session Status (h)
Table 12

Field name Valid values Comments

<Standard Message Header> Y MsgType = 'h'
336 TradingSessionID | Y String Identifier for Trading Session is used to represent
SECBOARD.

340 TradSesStatus Y int 100’ (Connection to MOEX market established); State of the trading session. Informs about connection
‘101” (Lost connection to MOEX); state between the MOEX Market Data Multicast
‘102’ (Connection to MOEX market established, FIX/FAST Platform and the trading system.
trading system wasn't restarted); Note: Receiving the very unlikely message 340=103
‘103’ (Connection to MOEX market established, means that Trading system has started from scratch and
trading system was restarted). you must remove all feed data on your side and start over.

58 Text N String Free format text string.

4.3.4 Market Data Request (V)
Table 13

Field name Valid values Comments

<Standard Message Header> | Y MsgType = 'V'

1180 ApplID N String OLR, OBR, TLR, MSR The channel ID.

1182 ApplBegSegNu | N SeqNum Beginning range of application sequence numbers.
m

1183 ApplEndSegNu | N SeqNum Ending range of application sequence numbers.
m

4.3.5 Market Data - Snapshot/Full Refresh (W)
Table 14

(@]
e Field name Valid values Comments

<Standard Message Header> | Y MsgType = 'W'

83 RptSeq Y int Sequence number of message within report series. Value
equal to the RptSeq(83) in Market Data - Incremental
Refresh (X) message at the time when the snapshot has
been prepared.

369 LastMsgSeq | N SegNum Value equal to the MsgSeqNum(34) from the last Market
NumProcess Data - Incremental Refresh (X) message which were
ed received and processed correctly.
340 TradSesStatu | N int ‘100’ (Connection to MOEX market established); State of the trading session. Informs about connection
S ‘101’ (Lost connection to MOEX); state between the MOEX Market Data Multicast
‘102’ (Connection to MOEX market established, trading | FIX/FAST Platform and the trading system.
system wasn't restarted); Note: Receiving the very unlikely message 340=103
103’ (Connection to MOEX market established, trading | means that Trading system has started from scratch and
system was restarted). you must remove all feed data on your side and start over.
55 Symbol Y String Ticker symbol. The MOEX internal instrument identifier,
SecCode.

Note: an instrument with a given SecCode may be traded
in several trading boards (SecBoard). You should use

each Symbol (55)+TradingSessionID (336) combination
as an individual security with own order book and list of

trades.
893 LastFragmen | N Boolean 'N' (Not Last Message); Indicates whether this message is the last in a sequence of
t "Y' (Last Message). messages in the snapshot for a security.

Boolean values are encoded in FAST messages as binary
integers: 1 for Y, and O for N.

1682 MDSecurity | N int 18 — Not available for trading Current trading status for a security
Trading 118 — Opening auction
Status 18 — Trading closed Notes:
103 — Closing period e abreakin any period is indicated by 1682=2
2 —Break in trading e Not available for trading and Trading Closed are
17 — Normal trading different technological states in the Trading

102 — Closing auction system. However they both disable trading

5509

451

268

=> 269

AuctionlIndic
ator

NetChgPrev
Day
NoMDEntrie
S
MDEntryTyp
e

2

Y

Boolean

PriceOffset
NumInGroup

char

106 — Dark pool auction
107 — Discrete auction
120 — Trading at Closing auction price

Y (Yes);
'N' (No).

'0' (Bid);

'1' (Offer);

'2' (Last Trade in Market statistics feed);
‘3" (Index Value);

'4' (Opening Price);

'5' (Closing Price);

7' (Trading Session High Price);

'8' (Trading Session Low Price);

'9' (Trading Session VWAP Price);

‘A’ (Imbalance), expressed in number of securities

'‘B' (Trade Volume, expressed in number of securities);

'J' (Empty book);

'N' (Session high bid);

'O’ (Session low offer);

'‘Q' (Auction Clearing Price), the clearing volume (271)
is expressed in lots;

‘W’(Closing auction price);

activity and thus have equal values of tag 1682.
e Switching between trading periods typically
involves a short stop in trading
e The sequence and schedule of periods and
trading status values depends on SecBoard code
(336) and on market conditions as defined by
the Exchange Trading rules.

Indicates that the primary distribution auction is being
held for the security. Primary distribution auction data is
currently not published in the feed.
Notes:

e 5509=N for ALL other auction types.
Boolean values are encoded in FAST messages as binary
integers: 1 for Y, and O for N.
Net change from previous day’s closing price vs. last
traded price.
Number of entries in Market Data message.

Type Market Data entry.
Notes:

e The availability of this field’s values depends on
market type (FX or Equities), SecBoard code
(336) and the Exchange trading rules.

o Different feeds have subsets of possible values,
depending on the data contents.

e Empty Book (269=J) indicates no data for a
security. Empty Book message may be generated
market-wide, which indicates that you should
remove all previously collected data and start
OVer.

e Meaning of some values depend on market type
(FX or Equities) and corresponding trading rules

e Off-book trading boards do not have data in
Orderbook Snapshot (OBS) and OrderList
snapshot feeds (OLS).

e Off-book trading boards may have market
statistics data for a Symbol taken from on-book

=> 278

MDEntrylD

N

String

‘c’(Closing auction volume), expressed in number of
securities;

‘> (For MSR/MSS feeds - volume of buy market orders
in closing auction, expressed in number of securities; for
OLR/OLS — market in closing auction buy order);
‘g’(For MSR/MSS feeds: volume of sell market orders
in closing auction, expressed in number of securities; for
OLR/OLS — market in closing auction sell order);

'i' (Last bid price);

'j' (Last offer price);

'h' (Open period price);

'k" (Close period price);

'I' (Market price 2); on FX market — FX fixing price as
calculated between 11:59 and 12:00 Moscow time.

'm' (Market price); On FX market — FX fixing price

‘o' (Official open price);

'p' (Official current price);

'q' (admitted quote); On FX market: international FX
fixing price

'r' (Official close price);

'v' (Total bid volume);

'W' (Total offer volume);

's' (Dark pool Auction price)

‘X' (Dark Pool Auction volume), expressed in number of
securities

y’(Accrued coupon yield per the unit of security at
current date, expressed in rubles)

'u' (Duration);

'z' (Trade list).

trading boards for this Symbol (market, current,
WAP prices, etc.)

e The set of field values may be extended
following the Trading system updates. It is
recommended to allow in your code ignoring
unknown values of this field, and linked to such
entry values of other fields, until the new field
meaning can be supported by your application.

e Indexes are published in Market statistics (MSR
and MSS) channels.

e Preious trading day values are indicated by
additional tag 286

Unique Market Data Entry identifier.
Notes:

e For trades (269=z) entries, contains a string with
Exchange trade number that is equal to trade
numbers in all trading interfaces

e For aggregated orderbook (OBS and OBR
channels) contains a unique string identifier of
price level

e For OrderList (OLR, OLS channels), contains a

=>270

=>271

=> 272

=> 273

=> 336

=>625

=> 276

=> 277

MDEntryPx | C

MDEntrySiz | C
e

MDEntryDat | N
e

MDEntryTi N
me

TradingSessi | N
onlD

TradingSessi | N
onSubID

QuoteConditi | N
on
TradeConditi | N

Price

Qty

UTCDateOnly
UTCTimeOnly

String

String

MultipleValueStri

ng

MultipleValueStri

NA — No trading

O — Opening auction period

C — Closing period

F — Final closing period

N — Normal trading period

L — Closing auction period

| — Discrete auction period

D — Dark pool auction period

E — Trading at the closing auction price period

'C' (Exchange Best)

'C' (Cash Trade (same day clearing));

string identifier of Add Order (279=0) update for
an order, NOT directly tied to the Exchange
Order number in trading interfaces.
Price of the Market Data Entry.
Conditionnally required if MDEntryType (269) not in (
‘A, 'B', 'C', 'J"). Conditionally required when
MDEntryType = "auction clearing price"
Quantity represented by the Market Data Entry.
Conditionally required if MDEntryType (269) in ('0', '1',
2'A’, 'B', 'C"). Conditionally required when
MDEntryType ="Q’ (auction clearing price), g’ (Offer
volume market order in closing auction)
Note: For 269=B, this field value is expressed in number
of securities. For all other values of tag 269, this field
value is expressed in number of lots.
Date of Market Data Entry.

Time of Market Data Entry.

Identifier for Trading Session. Used to represent
SECBOARD.

Note: an instrument with a given SecCode may be traded
in several trading boards (SecBoard). You should use
each Symbol (55)+TradingSessionID (336) combination
as an individual security with own order book and list of
trades.

Indicates the trading period

For updates and snapshots, Period value indicates a period

for an event reported, not necessarily the currently
running period.

Space-delimited list of conditions describing a quote.

Space-delimited list of conditions describing a trade.

on ng 'J' (Next Day Trade (next day clearing));
'R' (Opening Price) ;
'AJ’ (Official Closing Price);
‘98’ (Minimum value);
‘99’ (Maximum value).
=> 286 OpenCloseSe | N MultipleValueStri | '4' (Entry from previous business day) Flag that identifies a market data entry.
ttIFlag ng
=>40 OrdType H Char ‘1’(Market) Order type.
Used when MDEntryType (269) =’g’,’f
Note: Market in Closing Auction orders are activated and
published in Order List feed in Closing Auction period.
Matching occurs at the end of closing auction.
Other market orders are not published in the feed because
they never stay active.
=> 236 Yield N Percentage Yield percentage.
=>64 SettIDate N* LocalMktDate Specific date of trade settlement (SettlementDate) in
YYYYMMDD format
Notes:
For trades — settlement date of regular trade or negotiated
deal.
For REPO trades — settlement date of first part of REPO.
=> 44 Price N Price REPO rate for REPO trades.
=>423 PriceType N int ‘1’ percentage Indicates price type (REPO rate in percentage) for REPO
trades.
=>5292 BidMarketSi | N Int Total volume of market buy orders calculated for
ze currently expected auction price, expressed in number of
securities.
Used in closing auctions
=>5293 AskMarketSi | N Int Total volume of market sell orders, expressed in number
ze of securitiesUsed in closing auctions.
=> 5384 Accruedinter | N Amt Amount of accrued interest.
estAmt
=> 5459 SettlType N Char MOEX settlement code for trades (269=z)
=> 5510 ChgFromw | N PriceOffset Indicates change from previous day's weighted average
APrice price vs. last traded price.
=>5558 BuyBackPx N Price For REPO deals - REPO value calculated in roubles for

the current date
(used in Trade List (269=z) feed).

=>5559 BuyBackDat LocalMktDate For REPO deals - the date of the second part of REPO
e (used in Trade List (269=z) feed). Published as REPO
buyback duration REPOTERM+<Settledate>
=>5677 Repo2Px Price Value of the 2nd (buy-back) REPO leg, expressed in
settlement currency (used in Trade List (269=2z) feed).
=>5791 TotalVolume Amt Total volume.
Used when MDEntryType (269)="f"
Market in auction buy orders have money volume instead
of lot quantity. Other orders use lot quantities.
=> 5902 EffectiveTim UTSTimestamp Order activation time. The order or price level with an
e activation time specified is not active until that time.
=>9820 StartTime UTSTimestamp Auction start time. Used for Dark pool and Discrete
auctions
=>6139 TotalNumOf int Total number of trades.
Trades
=> 6143 TradeValue Amt Trade Value.
=>7017 Volumelndic int '0' (No orders) Volume indicator of Dark Pool auction active orders.
ator '1' (Total orders value is less than N*) Used when MDEntryType(269)="v’ or ‘w’.
'2' (Total orders value is greater than N*)
N(variable)*- the large order volume factor as determined
by the Exchange .
=> 9168 OfferNbOr int Number of sell orders.
=> 9169 BidNbOr int Number of buy orders.
=>9280 NominalValu float In REPO with CCP trading boards (currently EQRP),
e participants do anonymous trading for REPO rate as a

cost of money.

For this trading mode, underlying securities prices in
main market are discounted for REPO trading based on
CCP (Central Counter Party) risk management
parameters. Discounts may depend on individual order
size.

For each order, the system calculates its money value
based on underlying security’s discounted price and
number of lots in the order.

=>0412

=> 10504
=>10505

=>10509

=>10510

T' (Order activation time hasn't come yet).

OrigTime N int

OrderSide N char

OrderStatus N char 'O (Active);
MinCurrPx N Price

MinCurrPxC | N UTCTimeOnly

hgTime

4.3.6 Market Data - Incremental Refresh (X)

Important processing notes:
e Publishing massive updates in traffic-shaped feeds takes some time. At trading period end or start, this publishing is also done in parallel with publishing massive Security
Status (35=f) messages. Parallel publishing may result in getting an incremental update from new trading state slightly before receiving the status change for a security, or

getting an incremental update from previous trading state after the trading status changes to new trading period.

These amounts are then aggregated in the orderbook at
each REPO rate level and published in the REPO with
CCP aggregated orderbook as an additional field 9280.
This field is used in OBR/OBS channels only for REPO
with CCP on-book trading.

Indicates the microseconds portion of the transaction’s
registration time at the Matching engine. Should be added
to tag’s 273 value to get microsecond precision
timestamp. The field is available in Orders and trades
channels.

Side of order.

Describes the current state of order. Orders in T status are
not active and not used in matching.

Minimum current price. Used to determine condition
when the short sales should be prohibited.

Time when minimum current price was changed.

e For channels where add, change and delete MDUpdateActions are possible (Orders, Orderbook) the correct state is achieved after processing the whole set of repeating
group entries in the message.
e FAST message length is limited by the network MTU size, current limitation is 1300 bytes. For massive updates, this results in splitting the data per several FAST
messages. In this case, it is recommended to continue processing messages until you receive an update with FAST message size well less than the maximum length.
Otherwise you may get short time crossed book state.

e There is no Delete or Change actions for Trades feed.

Table 15

Field name

Valid values

Comments

'2' (Last Trade in Market statistics feed);

‘3" (Index Value);

'4' (Opening Price);

'5' (Closing Price);

7' (Trading Session High Price);

'8' (Trading Session Low Price);

'9' (Trading Session VWAP Price);

‘A’ (Imbalance), expressed in number of securities
'B' (Trade Volume), expressed in number of securities;
'J" (Empty book);

'N' (Session high bid);

'O' (Session low offer);

‘Q' (Closing Auction clearing price); the clearing
volume (271) is expressed in lots;

‘W’(Closing auction price);

‘c’(Closing auction volume), expressed in number of
securities ;

‘f> (For MSR/MSS feeds - volume of buy market
orders in closing auction, expressed in number of
securities; for OLR/OLS — market in closing auction
buy order);

‘g’(For MSR/MSS feeds: volume of sell market orders
in closing auction, expressed in number of securities;
for OLR/OLS — market in closing auction sell order);
'i' (Last bid price);

' (Last offer price);

'h' (Open period price);

'k’ (Close period price);

<Standard Message Header> Y MsgType = X'
268 NoMDEntries Y NumlInGroup Number of entries in Market Data message.
=>279 MDUpdateAction Y char '0' (New); Type of Market Data update action.
'1' (Change);
'2' (Delete).
=> 269 MDEntryType C char '0' (Bid); Type Market Data entry.
'1' (Offer); Notes:

e The availability of this field’s values depends on
market type (FX or Equities), SecBoard code (336)
and the Exchange trading rules.

o Different feeds have subsets of possible values,
depending on the data contents.

e Empty Book (269=J) indicates no data for a
security. Empty Book message may be generated
market-wide, which indicates that you should
remove all previously collected data and start over.

e Meaning of some values depend on market type (FX
or Equities) and corresponding trading rules

e Off-book trading boards do not have data in
Orderbook Snapshot (OBS) and OrderList snapshot
feeds (OLS).

e Off-book trading boards may have market statistics
data for a Symbol taken from on-book trading
boards for this Symbol (market, current, WAP
prices, etc.)

e The set of field values may be extended following
the Trading system updates. It is recommended to
allow in your code ignoring unknown values of this
field, and linked to such entry values of other fields,
until the new field meaning can be supported by
your application.

e Indexes are published in Market statistics (MSR and
MSS) channels.

e Preious trading day values are indicated by

=> 278

=>55

=>83

=>270

MDEntrylD

Symbol

RptSeq

MDEntryPx

N

Y

C

String

String

int

Price

"I (Market price 2); on FX market — FX fixing price as
calculated between 11:59 and 12:00 Moscow time.

'm' (Market price); On FX market — FX fixing price

‘o' (Official open price);

'p' (Official current price);

'q' (Last admitted quote); On FX market: international
FX fixing price

'r' (Official close price);

'v' (Total bid volume);

‘W' (Total offer volume);

's' (Dark pool Auction price)

‘X' (Dark Pool Auction volume), expressed in number
of securities.;

y’(Accrued coupon yield per the unit of security at
current date, expressed in rubles);

'u’ (Duration);

'z' (Trade list).

additional tag 286

Unique Market Data Entry identifier. Used, for example, for
TRADENO.
Notes:

e For trades (269=z) entries, contains a string with
Exchange trade number that is equal to trade
numbers in all trading interfaces

e For aggregated orderbook (OBS and OBR channels)
contains a unique string identifier of price level

e For OrderList (OLR, OLS channels), contains a
string identifier of Add Order (279=0) update for an
order, NOT directly tied to the Exchange Order
number in trading interfaces.

Ticker symbol. The MOEX internal instrument identifier,
SecCode.

Note: an instrument with a given SecCode may be traded in
several trading boards (SecBoard). You should use each
Symbol (55)+TradingSessionID (336) combination as an
individual security with own order book and list of trades.
Sequence number of message within report series.
Incremented by one for each update entry and for security
status updates.

Price of the Market Data Entry.

=>271

=>272
=>273
=> 336

=> 625

=>276

=> 277

MDEntrySize

MDEntryDate
MDEntryTime
TradingSessionlD

TradingSessionSu

bID

QuoteCondit
ion
TradeCondit
ion

N

N

Qty

UTCDateOnly
UTCTimeOnly
String

String

MultipleValueStrin

g
MultipleValueStrin

g

NA — No trading

O — Opening auction period

C — Closing period

F — Final closing period

N — Normal trading period

L — Closing auction period

I — Discrete auction period

D — Dark pool auction period

E — Trading at the closing auction price period

'C' (Exchange Best)

'C' (Cash Trade (same day clearing));

'J' (Next Day Trade (next day clearing));
'R' (Opening Price) ;

'AJ' (Official Closing Price);

‘98’ (Minimum value);

‘99’ (Maximum value).

Conditionally required when MDUpdateAction (279) =
New(0) and MDEntryType (269) not in ('A', 'B', 'C', 'J".
Conditionally required when MDEntryType (269) = "Auction
Clearing Price"

Quantity represented by the Market Data Entry.
Conditionally required when MDUpdateAction = New(0)
and MDEntryType (269) in ('0', '1', '2', ‘A’, 'B', 'C).
Conditionally required when MDEntryType = ‘Q’ (auction
clearing price), ‘g’(Offer volume market order in closing
auction)

Note: For 269=B, this field value is expressed in number of
securities. For all other values of tag 269, this field value is
expressed in number of lots.

Date of Market Data Entry.

Time of Market Data Entry.

Identifier for Trading Session. Used to represent
SECBOARD.

Note: an instrument with a given SecCode may be traded in
several trading boards (SecBoard). You should use each
Symbol (55)+TradingSessionID (336) combination as an
individual security with own order book and list of trades.

Indicates the trading period
For updates and snapshots, Period value indicates a period

for an event reported, not necessarily the currently running
period.

Space-delimited list of conditions describing a quote.

Space-delimited list of conditions describing a trade.

=> 286

=> 40

=>451

=> 236
=>64

=> 44
=> 423

=> 5292
=> 5293
=> 5384
=> 5459
=> 5510

=> 5558

=> 5559

OpenCloseS
ettlFlag
OrdType

NetChgPrev
Day

Yield
SettlDate

Price
PriceType
BidMarketSi
ze

AskMarketS
ize
Accruedinte
restAmt
SettIType
ChgFromwW
APrice

BuyBackPx

BuyBackDat
e

MultipleValueStrin | '4' (Entry from previous business day)

g
Char ‘1’(Market)

PriceOffset

Percentage
LocalMktDate

Price

int ‘1’ percentage
Int

Int

Amt

Char

PriceOffset

Price

LocalMktDate

Flag that identifies a market data entry.

Order type.

Used when MDEntryType (269) =’g’,’f’

Note: Market in Closing Auction orders are activated and
published in Order List feed in Closing Auction period.
Matching occurs at the end of closing auction.

Other market orders are not published in the feed because
they never stay active.

Net change from previous day closing price vs. last traded
price.

Yield percentage.

Specific date of trade settlement (SettlementDate) in
YYYYMMDD format

Notes:

For trades — settlement date of regular trade or negotiated
deal.

For REPO trades — settlement date of first part of REPO.
REPO rate for REPO trades

Indicates price type (REPO rate in percentage) for REPO trades.
Total volume of market buy orders calculated for currently
expected auction price, expressed in number of
securities.Used in closing auctions

Total volume of market sell orders, expressed in number of
securitiesUsed in closing auctions

Amount of accrued interest.

MOEX settlement code for trades (269=z2)
Indicates change from previous day's weighted average price
vs. last traded price.

For REPO deals - REPO value calculated in roubles for the
current date
(used in Trade List (269=z) feed).

For REPO deals - the date of the second part of REPO
(used in Trade List (269=z) feed). Published as REPO
buyback duration REPOTERM+<Settledate>

=>5677

=>5791

=>5902

=> 9820
=>6139

=>6143
=>7017

=> 90168
=> 9169
=>0280

=> 0412

Repo2Px

TotalVolum
e

EffectiveTi
me
StartTime
TotalNumOf
Trades
TradeValue
Volumelndi
cator

OfferNbOr
BidNbOr
NominalVal
ue

OrigTime

z2z22

N

Price
Amt

UTSTimestamp

UTSTimestamp
int

Amt
int

int
int
float

int

'0" (No orders)
'1' (Less then N* minimum order value)
'2' (Greater then N* minimum order value)

Value of the 2nd (buy-back) REPO leg, expressed in roubles
(used in Trade List (269=z) feed).

Used when MDEntryType (269)="f

Market in auction buy orders have money volume instead of
lot quantity. Other orders use lot quantities.

Order activation time. The order or price level with an
activation time specified is not active until that time.
Auction start time. Used for Dark pool and Discrete auctions
Total number of trades.

Trade Value.
Volume indicator of Dark Pool auction active orders. Used
when MDEntryType(269)="v’ or ‘w’.

N(variable)*- the large order volume factor as determined by
the Exchange .

Number of sell orders.

Number of buy orders.

In REPO with CCP trading boards (currently EQRP),
participants do anonymous trading for REPO rate as a cost of
money.

For this trading mode, underlying securities prices in main
market are discounted for REPO trading based on CCP
(Central Counter Party) risk management parameters.
Discounts may depend on individual order size.

For each order, the system calculates its money value based
on underlying security’s discounted price and number of lots
in the order.

These amounts are then aggregated in the orderbook at each
REPO rate level and published in the REPO with CCP
aggregated orderbook as an additional field 9280.

This field is used in OBR/OBS channels only for REPO with
CCP on-book trading.

Indicates the microseconds portion of the transaction’s

=> 10504
=> 10505

=>10509

=>10510

OrderSide
OrderStatus

MinCurrPx

MinCurrPx
ChgTime

char
char

Price

UTCTimeOnly

'O (Active);
T' (Order activation time hasn't come yet).

registration time at the Matching engine. Should be added to
tag’s 273 value to get microsecond precision timestamp. The
field is available in Orders and Trades channels.

Side of order.

Describes the current state of order. Orders in T status are not
active and not used in matching.

Minimum current price. Used to determine condition when
the short sales should be prohibited.

Time when minimum current price was changed.

5.1.Configure a VPN connection with MOEX using Windows XP

To configure a VPN connection, do the following:

1. Make sure you are connected to the Internet;

2. Click Start, and then click Control Panel;

- Control Panel o [=] E3

Fle Edt View Favorites

Tonls

Help

| &

0= O &

psaarch E Folders |- x @ n x | L;_lFolderSync

Address [Control Pancl

See Also

% windows Update
i Help and Suppart

A

Name =

| Zomments

jGo

@Add or Remove Programs
48 administrative Tools
4 Automatic Updates
Fﬂ.canf\gurat\on Manager
Date and Time
B\ Display
[¥iFalder Options
Fonts
B Game Controllers
glndex\ng Optians
P nternet Options
@Keyboard
A BMail

%Power Opkions
S2yPrinters and Fases

Program Download Monitor
i QuickTime
g realtek HD Sound Effect Manager
Q Regional and Language Options
1&ERemate Contral
"(Run Advertised Programs

Install or remove pr..,
Configure administr...
Set up Windows to ...
Wigw ot Edit Configu...
Set the date, time, ...
Change the appear...
Customize the displ...
Add, change, and ...

Aadd, remave, and c...
hange how Windo...
Configure your Inte. .
Cuskomize your key...
Microsoft Cutlook P...
Customize your mo..,

Connects to other c...
Configure your tele...
Configure energy-s...
Shows installed prin. ..
Manages downloadi,.,
Configures QuickTi...

Realtek HD Audio C...
Customize setkings ...
Configures remate ...
Runs advertised pr...

3. In Control Panel, double click Network Connections : cemestoshe conpuers, netwaks, and he nrnet

KN

% Network Connections

Ele Edit Wew Favorites Tools Adwanced Help

@
7 Search i Folders

eBack - _"J - Ljr

Elv % |_|:| D\j n x‘ilFolderSync

Address I‘;l Metwork Connections

EDE

Mame

| »

| Tvpe | Status

Network Tasks LAN or High-Speed Internet

Create anew <taLocal Area Connection
connection

& Change Windows
Firewall settings

See Also S

j‘__) Metwork Troubleshoaoker

Other Places S

[Control Panel

% My Metwork Places vl 4] | D
A

LAM or High-Speed Inter... Connected

4. Click Create a new connection in the Network Tasks task pad: 2%

Mew Connection Wizard

Welcome to the New Connection
Wizard

Thiz wizard helps you:
* Connect o the Internet,

* Connect to a private network, such as vour workplace
nietwiork.

To continue, click Mesxt,

< Black

Cancel |

5. In the Network Connection Wizard, click Next:

6. Click Connect to the network at my workplace and then Next:

Mew Connection Wizard

Hetwork Connection Type
wihat do pou want ba do’?

" Connect to the Internet
Connect ta the Internet =0 you can browse the "Web and read email.

{* Connect to the network at my workplace

Connect to a business netwark [uzing dial-up or ¥PH] 20 you can wark from home,
a field office, ar another locatian.

" Set up an advanced connection

Connect directly to anather computer uzing your senal, parallel, or infrared port, or
zet up thiz computer 2o that ather computers can connect to i,

< Back I Mest > I Cancel

Mew Connection Wizard

Metwork Connechion

Haw dio pau want to connect o the nebwark, at your workplace? @

Create the following connection:

" Dial-up connection

Connect using a modem and a regular phone line ar an Integrated Services Digital
Metwark [ISDM] phone line.

£+ ¥Mirtual Private Network connection

Connect to the network. using a wirtual private nebwork. [YPM] connection over the
Intermet.

< Back I Mest > I Cancel

7. Click Virtual Private Network connection and then Next:

8. Type Company Name (e.g. MOEX VPN Connection), and then click Next:

Mew Connection Wizard

Connection Hame
Specify a name for thiz connection ta vaur workplace.

Type a name for thiz connection in the fallawing box.

Compatiy Mame

MICE= VPN Connection

For example, you could type the name of your workplace or the name of a server pou
will connect to.

< Back I Mest » I Cancel

9. Click Do not dial the initial connection, and then click Next:

Mew Connection Wizard

Pubhc MNetwork
Windows can make sure the public netwaork, iz connected Ffirst,

YWindows can autamatically dial the initial connection to the [nternet or ather public
nebwork,, before establishing the wirtual connectian.

o Do hot dial the initial connection

~ Automatically dial thiz initial connection:

| -

< Back I Mest » I Cancel

10. Type the server address provided by MOEX team, and then click Next:

Mew Connection Wizard

YPH Server Selection
YWhat iz the name or address of the VP zerver?
Type the hogt hame or Internet Pratocal [IF] address of the computer ta which pou are
cohneching.

Hozt name ar [P address [for example, microsaft.com ar 1575407 1

< Back I Mest » I Cancel

11. Click My use only and then Next:

Mew Connection Wizard

Connection Availability

Yau can make the new cannection available to any uzer ar only ta yourzelf, @

A conhection that iz created far pour use anly iz 2aved in your uger account and iz not
available urlezs vou are logged on.

Create thiz connection far;

i~ Anyone's use

< Back I Mest » I Cancel

Mew Connection Wizard

Completing the New Connection
Wizard

Yaou have successfully completed the steps needed ta
create the following connection:

MICEX ¥PN Connection

The connection will be zaved in the MNetwark
Connections folder.

[i4dd a shorteut to this connection ta my desktop

Tao create the connechion and close this wizard, click Finizh.

< Back I Finizh I Cancel

12. Click Finish:

Connect MICEX ¥PN Connection |

Izer name: ||

Pazzword: I

[~ Save thiz uzer name and pagzsword for the following users;

% hie only

) Srpone whouses this computer

Lonnect I Cancel Froperties Help

13. Leave User name and Passwod empty, and then click Properties

14. On Security tab, click Advanced (custom settings) and then Settings...:

MICEX ¥PN Connection Properties |

Generall Options ~ Security | Netwurkingl .ﬁ.dvancedl

— Security options
{~ Typical [recommended settings]

Walidate myidentity &z fallaws;
| -

[T Automaticallyiuse my “Windows logon name and
pazzword [and damair if any]

[T Eeguire data encivption [dizconnest if none|

& Advanced [custon setingst

IJzing thesze zettingz requires a knowledge S ettings |
of zecurty protocols. 2ENGS. -

[PSec Settings... |

] I Cancel |

15. Choose Optional encryption (connect even if no encryption) data encryption and then click OK:

Advanced Security Settings |

Data encryption;

tional encryption [connect even if ho encruption]

— Logon security
" Use Extenzible Authertication Pratocal [E&4P)

i
Froperties |
£+ Allow these protocals
[T Unencypted password [P&4P)
[~ Shiva Pazeword Authentication Protocal [SPAF]
[Challenge Handshake Authertication Pratocal [CHAR)
¥ Microzaft CHAP [MS-CHAP)
™ Allow older M5-CHAP version for Windows 95 servers
¥ Microzoft CHAP Yersion 2 [M5-CHAP +2)

[For M5-CHAP based protocals, automatically use my
YWindows logon name and pazsward [and damair iF arw]

ak. I Cancel

16. On Networking tab, choose PPTP VPN type of VPN and then click OK:

MICEX ¥PN Connection Properties |

Generall Elptiu:unsl Securty Mebworking |.ﬁ.dvanced|

Tupe of WPH:
|PPTP VPN =l

Thiz connection uzes the following items;

% Internet Protocol [TCRAR]

O = File and Printer Sharing for Microsoft Networks
.@ (o5 Packet Scheduler

O E’i Client far Microsoft Metworks

In=tall... Wrinstall Froperties

Dezcription

Tranzmizzion Control Protocaolf/lnternet Protocal. The default
wide area network protocol that provides communication
acrogs diverze interconnected netwarks.

] | Cancel |

5.2. Configure a VPN connection with MOEX using Windows 7
1. Make sure you are connected to the Internet

2. Open Control Panel—Network and Internet—Network and Share Center and then click Set up a new connection or network:

[E=5 Hol)

h Control Panel yel |

T
OU == » Control Panel » Metwork and Internet » Network and Sharing Center

File Edit View Tools Help

Control Panel Home Change your networking settings

ﬁl Set up a new connection or network
=

Ch dapter setti
ange adapter setings Set up a wireless, broadband, dial-up, ad hec, or VPN connection; or set up a router or access point.

Change advanced sharing
settings

i. Connect to a network
Connect or reconnect to a wireless, wired, dial-up, or VPN network connection,
See also ',% Choose homegroup and sharing options
Access files and printers located on other network computers, or change sharing settings.
HomeGroup £
Internet Options @ Troubleshoot problems

Windows Firewall Diagnose and repair network problems, or get troubleshooting information,

3. Choose Connect to a workplace and then click OK:

Choose a connection option

Connect to the Internet
Set up a wireless, broadband, or dial-up connection to the Internet.

 Set up a new network
-« Configure a new router or access point.

Set up a dial-up connection
Connect to the Internet using a dial-up connection,

4. Choose No, create a new connection and then click Next

@ L:h Connect to a Workplace

Do you want to use a connection that you already have?

@iMo, create a new connection;

() Yes, I'll choose an existing connection

;-', VPN Connection
j; WAN Miniport (PPTP)

;,_ EPAM VPN Gateway
@ WAN Miniport (PPTP)

[WHMICEX VPN Connectio
[JWAN Miniport (PPTP)

[Mext][Cancel

5. Click Use my Internet Connection (VPN):

How do you want to connect?

< Use my Internet connection (VPN)
Connect using a virtual private network (VPM) connection through the Internet.

L I

2 Dial directly
Connect directly to a phone number without going through the Internet.

A e

What is a VPM connection?

6. Type the server address provided by MOEX team to the Internet address field, type MOEX VPN Connection to the Destination name field,
check Don''t connect now; just set it up so I can connect later and then click Next:

=)

@ |_:[] Connect to a Workplace

Type the Internet address to connect to

Your network administrator can give you this address.

Internet address:

Destination name: MICEX VPN Connection|

[Use a smart card

) [] Allow other people to use this connection

This opticn allows anyone with access to this computer to use this connection.

[¥] Don't connect now; just set it up so [can connect later

[MNext ll Cancel

Leave the next page without changes and then click Next:

Type your user name and password

User name:

Password:

Show characters

Bemember this password

Domain (optional):

@ L:E] Connect to a Workplace

The connection is ready to use

Ay o

=

= Connect now

Close

8. Click Close:

9. Open Control Panel—Network and Internet—Network and Share Center and click Change adapter setting:

@ ’Tﬁ » Control Panel » Network and Internet » Network and Sharing Center - ‘ l,” Search Control Panel

File Edit View Tools Help

Control Panel Home

View your basic network information and set up connections
Change adapter settings m& E" 0 See full map
N > e
Change advanced sharini
e g EPRUSARWO40L Multiple networks Internet
(This computer)
View your active networks Connect or disconnect
epam.com Access type: Internet T
Domain network Connections: [Local Area Connection
Unidentified network Access type: Mo network access
Public network Connections: [VirtualBox Host-Only Network
See also
Change your networking settings
HomeGroup

E. Set up a new cennection or network
Internet Opti - . .
ntery (=TS Set up a wireless, broadband, dial-up, ad hoc, or VPN connection; or set up a router or access point.

Windows Firewall

=i5s Connect to a network =

o "

E=8 Bl =5
@Dv| K« Met.. » Netw.. » - | ¢f| | Search Net...

File Edit VYiew Tools Advanced Help

Organize = Start this connection »» ;,'i - E;l 1@1
[MICEX VPN Connection 0
"':.'-Jl'| Disconnected
&z WAN Miniport (IKEvZ)
Connect

L"- VirtualBox Host-Only Network
S Unidentified network Status

W2 VirtualBox Host-Only Ethernet Ad... .
Set as Default Connection

[VPM Connectien
- ‘-'h" Disconnected Create Copy
@z WAN Miniport (PPTP)

Create Shortcut
'@" Delete
'@:‘ Rename

il Change settings for this connection, such as

'@' Properties

10. Choose Properties of the just created connection:

11. On Security tab choose Point to Point Tunneling Protocol (PPTP) VPN type, choose Optional encryption (connect even if no encryption) data
encryption and then click OK:

é MICEX VPN Connection Properties @

| General | Options | Security | Metwaorking I 5haring|

Type of VPN:
| Foint to Pint Tunneling Protacel (PFTF) -
Advanced settings
Data encryption:
[Dptiunal encryption (connect even if no encryption) v]
Authentication

i) Use Extensible Authentication Protocal (EAP)

@ Alow these protocals

[] Unencrypted password (PAP)
Challenge Handshake Authertication Protocol (CHAR)
Microsoft CHAP Version 2 (MS-CHAP vi2)

[Automatically use my Windows logon name and
password (and domain, if any)

| ok || cance |

5.3. Configure a VPN connection with MOEX using OpenSUSE
1. Make sure you are connected to the Internet;

2. Install pptp client using the following command:

sudo zypper install pptp

Run the following command:
sudo /usr/sbin/pptp-command setup
Type ‘4’ and press enter:

Manage CHAP secrets
Manage PAP secrets

List PPTP Tunnels

Add a NEW PPTP Tunnel
Delete a PPTP Tunnel
Configure resolv.conf
Select a default tunnel
Quit

4 + <enter>

W0 ~JOo U W N

Type ‘1’ and press enter:

Add a NEW PPTP Tunnel.

1.) Other

Which configuration would you like to use?:

Type ‘micex vpn connection’ and press enter:
Tunnel Name: micex vpn connection + <enter>
Type ‘<server address>" and press enter:

Server IP: <server address> + <enter>

Type ‘del default’ and press enter:

route: del default + <enter>

1 + <enter>

Type ‘add default gw 1.1.1.1 TUNNEL DEV’ and press enter:

10.

11.

12.

13.

14.

15.

16.

route: add default gw 1.1.1.1 TUNNEL DEV
Simply press enter:

route: <enter>

Type ‘test’ and press enter:

Local Name: test

Leave a default value, simply press enter:
Remote Name [PPTP]: <enter>

If you have done everything correct, you will see:

Adding micex vpn connection - <server address> - test - PPTP
Added tunnel micex vpn connection

Type 8’ and press enter to exit the setup wizard.

The next step is to make a few changes in a configuration file which was created on previous steps by the wizard. At first open it using the
following command:

sudo vim /etc/ppp/peers/micex vpn connection

Needed changes are colored by red:

PPTP Tunnel configuration for tunnel micex vpn connection
Server IP: <server address>

Route: route del default

Route: route add default gw 1.1.1.1 TUNNEL DEV

H= H H o

noauth

#

Tags for CHAP secret selection
#

name test

remotename PPTP

#

Include the main PPTP configuration file
#

file /etc/ppp/options.pptp

. Please be careful and don’t forget to save this file before closing. That’s all. Now you are ready to establish the VPN connection using the
following command:

sudo /usr/sbin/pptp-command start micex vpn connection

You will see something like this:

Using interface pppO

Connect: ppp0 <--> /dev/pts/1

local 1IP address 1.1.1.19

remote IP address 1.1.1.1

Script ?? finished (pid 30023), status = 0x0

Script /etc/ppp/ip-up finished (pid 30032), status = 0x0

Route: add -net 0.0.0.0 gw 1.1.1.1 added

Route: add -net 1.1.1.0 netmask 255.255.255.0 gw 1.1.1.1 added

All routes added.

Tunnel micex vpn connection is active on pppO. IP Address: 1.1.1.19

. To stop this connection use the following command:

sudo /usr/sbin/pptp-command stop

. Important: After the VPN connection is stopped you will need to return the default route rule you had before. Otherwise the next tries to
establish the VPN connection will be failed. It’s recommended to make a script which will be responsible for the default route rule
restoring.

5.4.Troubleshooting

1. The VPN connection is established but your application doesn’t receive UDP packets (Windows 7)

1.1 Open status of your VPN connection and check if the count of ‘Received’ bytes is continuously growing; If it’s not so, ask for help the
MOEX support team.

1.2 Check firewall settings. Temporary turn off the firewall. If after that all seems ok, turn on firewall again but add the firewall rule:

v' Open Windows Firewall—Advanced settings;
v" Choose Inbound Rules and on the right click New Rule:

@ Windows Firewall with Advanced Security

fo o]

Eile Action View Help
=@\
ko Eirewllpith ko) Actions

B2 Inbound Rules

Outbound Rules]
? . . ﬂ Windows Firewal with Advanced Security provides network secrity for Windows computers
%4 Connection Security Rules

- Kl Monitoring

| Windows Firewall with Advanced Security on Local .. &
& Import Policy...
45 Export Policy.

Overview E Restore Default Policy
(i) Foryour securty, some settings are controlled by Group Policy Diagnose / Repair
Domain Profile is Active View e
@ Windows Firewallis on 1G] Refresh
@ Irbound connections that do not match a e are blocked [=] Properties
@@ Outbound connections that da not match a e are allowed H Help

@ Irbound connections that do not match a e are blocked.
@@ Outbound connections that da not match a nle are allowed

Public Profile is Active
Cl —TT— v [

9 Mew Inbound Rule Wizard

Rule Type
Select the type of firewall rule to create.

Steps:

@ Rule Type What type of nule would you like to create?

@ Program

@ Action @ Program

o Profie Rule that controls connections for a program.
@ Name) Port

Rule that controls connections for a TCP or UDFP port.

| Predefined:
BranchCache - Contert Retrieval (Uses HTTF)

Rule that controls connections for a Windows experience.

_! Custom
Custom rule.

Leam more about nile types

] I Cancel

[==]

1=
2
\(

v' Leave the first page without changes and click Next:
v On the next page you need to specify path to your program:

9 Mew Inbound Rule Wizard
Program

Specify the full program path and executable name of the program that this rule matches.

Steps:
@ FRule Type Does this rule apply to all programs or a specific program?
& Program
@ Action) All programs
o Frofie Rule applies to all connections on the computer that match other rule properties.
@ Mame

@ This program path:

Browse...
Bxample: c:\path“program exe
%ProgramFiles % \browser\browser exe

Leam more about specifying programs

<Back |[Nea> |[Cancel

v’ Leave the pages below without changes:

ﬂ MNew Inbound Rule Wizard

Action

Specify the action to be taken when a connection matches the conditions specified in the nule.

Steps:

-

Rule Type
Program
Action
Profile

Name

What action should be taken when a connection matches the specified conditions?

@ Allow the connection
This includes connections that are protected with |Psec as well as those are not.

1 Allow the o cltion if it is

This includes only connections that have been authenticated by using IPsec. Connections
will be secured using the settings in IPsec properties and rules in the Connection Security
Rule node.

1 Block the connection

Leam more about actions

<Back [Net> || Cancdl

9 MNew Inbound Rule Wizard
Profile

Specify the profiles for which this rule applies.

Steps:
@ Rule Type When does this rule apply?
@ Program
@ Action Domain
» Profile Appliez when a computer ig connected to its corporate domain.
@ Name Private
Applies when a computer is connected to a private network location.
Public

Applies when a computer is connected to a public network location.

Leam more about profiles

<Back || Net> || Cancel

v" Here you should to specify the name of this rule. E.g. MyApplicationRule.

Name

Specify the name and description of this rule.

Steps:

@ Rule Type
@ Program
@ Action

@ Profile

@ Name

MName:

Description {optional):

<Back | _Fnsh | [Cancel

6.1.EPAM - B2Bits ® FIX Antenna ™ Library

EPAM Systems, Inc., the leading software engineering and IT Outsourcing (ITO) provider in Central and Eastern Europe (CEE), and
B2BITS®, EPAM Systems Capital Markets Competency Center, have certified their high performing FIX engine FIX Antenna ™ with MOEX Market
Data Multicast FIX/FAST Platform.

http://www.epam.com/software-development-services-summary.htm
http://www.b2bits.com/trading_solutions/fix_engines.html

FIX Antenna ™ (C++ and .NET) allows one to transparently subscribe to Market Data from MOEX Market Data Multicast FIX/FAST
Platform, hiding all feeds arbitraging and recovery functionality behind straightforward object oriented API. The package includes complete
documentation and samples, illustrating the use of FIX Antenna ™ with MOEX Market Data Multicast FIX/FAST Platform. .NET package also
contains the GUI client, which receives Market Data from MOEX Market Data Multicast FIX/FAST Platform.

6.1.1 Quick Start - Code Samples
Here the source code of the simple client. This code is a skeleton of the real application and shows one of the possible ways to use FA
micex_mfix.

instrument_listener_impl.h:
#pragma once

#include <B2BITS micex_mfix_listeners.h>

namespace mfix_micex_client {
class instrument_listener_impl
: public micex_mfix::instrument_listener {
public:
virtual bool on_security_definition(const micex_mfix::security_description &sec_desc,
const micex_mfix::security_id &sec_id,
const micex_mfix::symbol &symb,
const std::string &board,
const Engine::FIXMessage &d_msg,
const std::string &channel_id)

//add your processing code here, return your result true or false
return false;

}

virtual void on_subscribed(const micex_mfix::symbol &symb,
const std::string &board,
micex_mfix::mfix_feed_type feed_type)

//add your processing code here

}

virtual void on_unsubscribed(const micex_mfix::symbol &symb,
const std::string &board,
micex_mfix::mfix_feed_type feed_type)

//add your processing code here

}

virtual void on_increment(const micex_mfix::symbol &symb,
const std::string &board,
const Engine::TagValue &entry,
micex_mfix::mfix_feed_type feed_type)

http://www.b2bits.com/trading_solutions/fix_engines.html
http://www.b2bits.com/trading_solutions/micex-fixfast.html
http://www.b2bits.com/trading_solutions/micex-fixfast.html

//add your processing code here

}

virtual void on_security_status(const micex_mfix::symbol &symb,
const std::string &board,
const Engine::FIXMessage &msg,
micex_mfix::mfix_feed_type feed_type)

//add your processing code here

}

virtual bool on_natural_refresh(const micex_mfix::symbol &symb,
const std::string &board,
const micex_mfix::increments &nr_msgs,
micex_mfix::mfix_feed_type feed_type)

//add your processing code here, return your result true or false
return true;

}

virtual void on_snapshot(const micex_mfix::symbol &symb,
const std::string &board,
const micex_mfix::snapshots &msgs,
micex_mfix: :mfix_feed_type feed_type)

{
}

virtual void on_recovery_started(const micex_mfix::symbol &symb,
const std::string &board,
micex_mfix::mfix_feed_type feed_type)

//add your processing code here

//add your processing code here, return your result true or false
return false;

}

virtual void on_recovery_stopped(const micex_mfix::symbol &symb,
const std::string &board,
micex_mfix::mfix_recovery_reason reason,
micex_mfix::mfix_feed_type feed_type)

//add your processing code here

}

virtual void on_error(const micex_mfix::symbol &symb,
const std::string &board,
const std::string &error,
micex_mfix::mfix_feed_type feed_type)

//add your processing code here

1

application_listener_impl.h:
#pragma once
#include <B2BITS micex_mfix_listeners.h>
namespace mfix_micex_client {
class application_listener_impl
: public micex_mfix::micex_mfix_application_listener {
public:
virtual void on_error(const std::string &error)

//add your processing code here

}

virtual void on_process(const Engine::FIXMessage &msg, const std::string &channel_id)

//add your processing code here

}

virtual void on_feed_reset(const std::string &channel_id, micex_mfix::mfix_feed_type feed_type)

//add your processing code here

}

virtual void on_heartbeat(const std::string &channel_id, micex_mfix::mfix_feed_type feed_type)
//add your processing code here
s

main.cpp:
#include <iostream>

#include <B2BITS_FixEngine.h>
#include <B2BITS_micex_mfix_application.h>

#include "application_listener_impl.h"
#include "instrument_listener_impl.h"

using namespace mfix_micex_client;

void subscribe_and_wait(micex_mfix::micex_mfix_application *app,

instrument_listener_impl *&ins_listener);

int main(int argc, char *agrv[])

{
micex_mfix::micex_mfix_application *app = nullptr;
application_listener_impl *app_listener = nullptr;
instrument_listener_impl *ins_listener = nullptr;

try {
Engine::FixEngine::init("./engine.properties™);

//configure parameters
micex_mfix::micex_mfix_application_params app_params;
app_params.templates_fn_ = "./FIX50SP2.xml";
app_params.config xml_ = "./config.xml";

app_listener = new application_listener_impl();
app = Engine::FixEngine::singleton()->createMOEXApplication(app_params, app_listener);

subscribe_and_wait(app, ins_listener);

} catch (const Utils::Exception &ex) {
std::cerr<<"Exception: "<<ex.what()<<"\n";
if (nullptr != app_listener) {

app_listener->release();

}

if (nullptr != ins_listener) {
ins_listener->release();
}

return 100;
}

app_listener->release();
ins_listener->release();

app->release();

return 0;

}

void subscribe_and_wait(micex_mfix::micex_mfix_application *app,
instrument_listener_impl *&ins_listener)
{
//get channels id
micex_mfix::channel_ids channels(app->get_channel_ids());

//get orderbook feed
micex_mfix::micex_feed &order_book_feed = app->get_orderbook_feed();

ins_listener = new instrument_listener_impl();

//subscribe to known instrument in channel[1], with market recovery as recovery type
order_book_feed.subscribe_by symbol("AFLT", "EQBR", *ins_listener,
channels[1],micex_mfix: :RM_USE_MARKET_RECOVERY);

while (true) {
std::cout<<"Type 'q' for exit\n\n";
char c;
std::cin>>c;
if ("q" ==c || Q" ==c¢) {
break;

}
}

order_book_feed.unsubscribe_by_ symbol("AFLT", "EQBR", channels[1]);

6.1.2 API Overview
Here is a list of all documented files with brief descriptions:

/include/B2BITS_micex_mfix_application.h

/include/B2BITS__micex_mfix_listeners.

/include/B2BITS_micex_mfix_types.h

Here are the classes, structs, unions and interfaces with brief descriptions:

micex_mfix:
micex_mfix:
micex_mfix::
micex_mfix::
micex_mfix::

micex_mfix:

:instrument_listener

:micex_feed

micex_mfix_application
micex_mfix_application_listener

micex_mfix_application_params

:security_definition_listener

instrument listener (observer)
Represents micex feed (stream)
Represents micex mfix application

Represents micex mfix application
listener

Startup parameters

Receives Security Definition messages

6.1.2.1.1. micex_mfix::instrument _listener Class Reference

#include <B2BITS micex mfix listeners.h>

Public Member Functions

virtual void on_subscribed (const symbol &symb, const std::string &board, mfix_feed_type
feed_type)=0

Faired when successfully subscribed to security description.

virtual void on_unsubscribed (const symbol &symb, const std::string &board, mfix_feed_type
feed_type)=0

Faired when successfully unsubscribed from security description.

virtual void on_increment (const symbol &symb, const std::string &board, const
Engine::TagValue &entry, mfix_feed_type feed_type)=0

Faired when user should reset book with the bnew values.

virtual void on_security_status (const symbol &symb, const std::string &board, const
Engine::FIXMessage &msg, mfix_feed_type feed_type)=0

Faired when user should update instrument status.

virtual bool on_natural_refresh (const symbol &symb, const std::string &board, const
increments &nr_msgs, mfix_feed_type feed_type)=0

Faired when user should reset book with the bnew values and Natural Refresh is
used return true if book is recovered otherwise false

virtual void on_snapshot (const symbol &symb, const std::string &board, const snapshots
&msgs, mfix_feed_type feed_type)=0

Faired when user should reset book with the bnew values.

virtual void on_recovery_started (const symbol &symb, const std::string &board,
mfix_feed_type feed_type)=0

Faired when recovery is started.

virtual void on_recovery_stopped (const symbol &symb, const std::string &board,

mfix_recovery_reason reason, mfix_feed_type feed_type)=0

Faired when recovery is ended.

virtual void on_error (const symbol &symb, const std::string &board, const std::string &error,
mfix_feed_type feed_type)=0

Faired on error (example: when second subscribing was attempt for the same
instrument)

Note:

Objects of this class do not put to the std::auto_ptr or other smart pointers (except specialized, example Utils::RefCounterPtr). Object must be created via
"new" keyword only.

6.1.2.1.2. micex_mfix::micex_feed Class Reference

#include <B2BITS micex mfix application.h>

Public Member Functions

virtual void subscribe_by symbol (const symbol &symb, const std::string &board,
instrument_listener &listener, const std::string &channel_id, mfix_recovery_mode
recovery=RM_USE_MARKET_RECOVERY)=0

Subscribes instrument by symbol.

virtual void unsubscribe_by_symbol (const symbol &symb, const std::string &board, const
std::string &channel_id)=0

Unsubscribes from instrument by symbol.

virtual void subscribe_all (instrument_listener &listener, const std::string &channel_id,
mfix_recovery_mode recovery=RM_USE_MARKET_RECOVERY)=0

Subscribe all instruments.

virtual void unsubscribe_all (const std::string &channel_id)=0

Unsubscribe all instruments.

6.1.2.1.3. micex_mfix::micex_mfix_application Class Reference

#include <B2BITS micex mfix application.h>

Public Member Functions
virtual void release ()=0

Releases resources assigned to application.

virtual micex_feed & get_orderbook_feed () const =0

Retrieves order book feed (stream)

virtual micex_feed & get_statistics_feed () const =0

Retrieves statictics feed (stream)

virtual micex_feed & get_orders_feed () const =0

Retrieves order feed (stream)

virtual micex_feed & get_trades_feed () const =0

Retrieves trades feed (stream)

virtual const channel_ids & get_channel_ids () const =0

Returns channel ids.

6.1.2.1.4. micex_mfix::micex_mfix_application_listener Class Reference

#include <B2BITS micex mfix listeners.h>

Public Member Functions

virtual void on_error (const std::string &error)=0
Called on errors in micex mfix application
This function can be called from different thread, so used should make it thread-safe in implementation

virtual void on_process (const Engine::FIXMessage &msg, const std::string &channel_id)=0

Called on non X, d and W messages
This function can be called from different thread, so used should make it thread-safe in implementation

virtual void on_feed_reset (const std::string &channel_id, mfix_feed_type feed_type)=0
Called on reset for feed (X-message was received with entry 269=1)

virtual void on_heartbeat (const std::string &channel_id, mfix_feed_type feed_type)=0
Called on heartbeat messages

Note:
Obijects of this class do not put to the std::auto_ptr or other smart pointers (except specialized, example Utils::RefCounterPtr). Object must be

created via "new" keyword only

6.1.2.1.5. micex_mfix::micex_mfix_application_params Struct Reference

#include <B2BITS_micex mfix application.h>

Public Types
enum recovery_type { udp_recovery, tcp_recovery }
Public Attributes
std::string templates_fn_
Path to the MFIX Market Data FAST templates file.
std::string config_xml_
Path to the MFIX Market Data configuration file.
size_t number_of_workers_
Number of threads to decode incoming data Default value is 4
size_t increment_queue_size_
Maximum number of messages could be stored in recovery mode for the particular instrument. Default value is 50
bool check_udp_sender_

Pass true to check the UDP packet sender's IP address. Default value is true

std::string

size_t

size_t

bool

bool

std::size_t

recovery_type

std::string

std::string

6.1.2.1.6.

listen_interface_ip_
IP of network interface to listen on; nullptr or empty string means all interfaces. Default value is null (all interfaces)

incoming_udp_buffer_size_
UDP incoming buffer size. Should be tuned in case of UDP message miss

application_message_queue_size_

Count of messages that are queued for processing by Application.

log_incoming_FIX_messages_
Pass true to write out to the log file incoming FIX messages Default value is false

log_incoming_udp_messages__
Pass true to write out to the binary log file incoming FAST messages Default value is false

hole_pack_delay_
Number of incoming messages with seq nhum out of order to skip before start recovery. Default value is 1

recovery_type_

Type for the recovery. tcp_recovery uses only tcp recovery for instruments (34 tag is used to detect hole) udp_recovery uses one
mode of the mfix_recovery_mode for instruments (83 tag is used to detect hole) Default value is udp_recovery

user_login_
User login for tcp recovery session Default value is empty string

user_password_
User password for tcp recovery session Default value is empty string

micex_mfix::security_definition_listener Class Reference

#include <B2BITS micex mfix listeners.h>

Public Member Functions

virtual bool on_security_definition (const security_description &sec_desc, const security_id &sec_id, const symbol &symb, const std::string
&board, const Engine::FIXMessage &d_msg, const std::string &channel_id)=0

Faired when security definition message was received

Return true if need to continue listening instrument replay, false otherwise

Note:
Obijects of this class do not put to the std::auto_ptr or other smart pointers (except specialized, example Utils::RefCounterPtr). Object must be
created via "new" keyword only.

