

FAST sm Specification
 Version 1.x.1

2006-12-20

Status of this Document
This document specifies a standards protocol for the FIX community, and requests discussion and
suggestions for improvements.

Distribution
Distribution of this document is unlimited.

Copyright Notice
Copyright ©FIX Protocol Ltd. (2006)

Abstract
This document specifies FAST, which is a space and processing efficient encoding method for message
oriented data streams. It defines the layout of a binary representation and the semantics of a control
structure called a template. It also defines an XML syntax for concrete template definitions.

Disclaimer
THE INFORMATION CONTAINED HEREIN AND THE FINANCIAL INFORMATION
EXCHANGE PROTOCOL (COLLECTIVELY THE “FIX PROTOCOL”) ARE PROVIDED “AS IS”
AND NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL MAKES ANY
REPRESENTATION OR WARRANTY, EXPRESS OR IMPLIED, AS TO THE FIX PROTOCOL
(OR THE RESULTS TO BE OBTAINED BY THE USE THEREOF) OR ANY OTHER MATTER
AND EACH SUCH PERSON AND ENTITY SPECIFICALLY DISCLAIMS ANY WARRANTY OF
ORIGINALITY, ACCURACY, COMPLETENESS, MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. SUCH PERSONS AND ENTITIES DO NOT WARRANT THAT THE
FIX PROTOCOL WILL CONFORM TO ANY DESCRIPTION THEREOF OR BE FREE OF
ERRORS. THE ENTIRE RISK OF ANY USE OF THE FIX PROTOCOL IS ASSUMED BY THE
USER.

USERS SHOULD BE AWARE THAT IN RELATION TO THE STANDARD, REFERRED
TO AS FIX ADAPTED FOR STREAMING ("FAST PROTOCOL"), CHICAGO
MERCANTILE EXCHANGE ("CME") HAS MADE A PATENT APPLICATION WHICH
POTENTIALLY COVERS WITHIN ITS CLAIMS A LIMITED ELEMENT OF THE FAST
PROTOCOL AND HAS, BY ENTERING INTO A PATENT AGREEMENT WITH FIX
PROTOCOL LIMITED, OFFERED USERS A "COVENANT NOT TO SUE" IN
RELATION TO THE USE OF THE FAST PROTOCOL. CLICK HERE FOR MORE
INFORMATION IN RELATION TO THIS PATENT AGREEMENT
http://www.fixprotocol.org/fastagreement.
NO PERSON OR ENTITY ASSOCIATED WITH THE FIX PROTOCOL SHALL HAVE ANY
LIABILITY FOR DAMAGES OF ANY KIND ARISING IN ANY MANNER OUT OF OR IN
CONNECTION WITH ANY USER’S USE OF (OR ANY INABILITY TO USE) THE FIX
PROTOCOL, WHETHER DIRECT, INDIRECT, INCIDENTAL, SPECIAL OR
CONSEQUENTIAL (INCLUDING, WITHOUT LIMITATION, LOSS OF DATA, LOSS OF USE,
CLAIMS OF THIRD PARTIES OR LOST PROFITS OR REVENUES OR OTHER ECONOMIC
LOSS), WHETHER IN TORT (INCLUDING NEGLIGENCE AND STRICT LIABILITY),
CONTRACT OR OTHERWISE, WHETHER OR NOT ANY SUCH PERSON OR ENTITY HAS
BEEN ADVISED OF, OR OTHERWISE MIGHT HAVE ANTICIPATED THE POSSIBILITY, OF
SUCH DAMAGES.

FAST Specification 2 (44) 2006-12-20
 * *

http://www.fixprotocol.org/fastagreement

No proprietary or ownership interest of any kind is granted with respect to the FIX Protocol (or any
rights therein) except as expressly set out in FPL’s copyright and acceptable use policy.

FAST Specification 3 (44) 2006-12-20
 * *

Acknowledgements
FPL would like to recognize the efforts of many people in producing this specification. The design is
based on ideas from and discussions between Rolf Andersson, Daniel May and Mike Kreutzjans. David
Rosenberg authored the specification. Matt Simpson, Richard Shriver, Jim Northey have provided
substantial input and feedback to successive drafts of the specification. Anders Furuhed, Yuriy Gormakh,
Sitaram Guruswamy, Wei Keok, Göran Forsström, and Mats Ljungqvist have reviewed successive drafts
of the specification. Matt Simpson and Greg Orsini contributed the examples section. Finally, the
feedback of all Market Data Optimization Work Group participants played an important role in creating
this document.

FAST Specification 4 (44) 2006-12-20
 * *

Table of Contents
1 Introduction ...7
2 Terminology ...8
3 Notation..8
3.1 XML Namespace...8
4 Error Handling ..8
5 Application Types ...8
6 Templates ...9
6.1 Instruction Context...9
6.2 Field Instructions...10
6.2.1 Integer Field Instructions..10
6.2.2 Decimal Field Instructions..10
6.2.3 String Field Instruction..11
6.2.4 Byte Vector Field Instruction...11
6.2.5 Sequence Field Instruction ...11
6.2.6 Group Field Instruction ..12
6.3 Field Operators..12
6.3.1 Dictionaries and Previous Values ..12
6.3.2 Initial Values..13
6.3.3 Constant Operator ...13
6.3.4 Default Operator ..14
6.3.5 Copy Operator..14
6.3.6 Increment Operator ...14
6.3.7 Delta Operator..15
6.3.8 Tail Operator...16
6.4 Template Reference Instruction ...17
7 Names ...17
7.1 Auxiliary Identifiers...18
8 Type Conversion ...18
8.1 Converting from String ..18
8.1.1 Converting to Integers...19
8.1.2 Converting to Decimal ..19
8.1.3 Converting to Byte Vector..19
8.1.4 Converting Between Character Sets ..19
8.2 Converting from Integers ..19
8.2.1 Converting to Integers...19
8.2.2 Converting to Decimal ..19
8.2.3 Converting to String...19
8.3 Converting from Decimal ..20
8.3.1 Converting to Integers...20
8.3.2 Converting to String...20
8.4 Converting from Byte Vector to String ...20
9 Extensibility..20
10 Transfer Encoding ..20
10.1 Byte and Bit Ordering...21
10.2 Stop Bit Encoded Entities ...21
10.3 Template Identifier ...21
10.4 Nullability ...21
10.5 Presence Map...21
10.5.1 Presence Map and NULL Utilization ..22

FAST Specification 5 (44) 2006-12-20
 * *

10.6 Fields ...23
10.6.1 Integer Numbers ...23
10.6.2 Scaled Number...23
10.6.3 ASCII String...23
10.6.4 Unicode String ...24
10.6.5 Byte Vector...24
10.7 Delta ..24
10.7.1 Integer Delta ..24
10.7.2 Scaled Number Delta..24
10.7.3 ASCII String Delta ..25
10.7.4 Byte Vector Delta..25
Appendix 1 RELAX NG Schema ..26
Appendix 2 W3C XML Schema (Non-Normative) ..27
Appendix 3 Examples (Non-Normative)..32
Appendix 4 Summary of Error Codes...42
References...44

Document History
Version Date Author Description
1.x.01 2006-05-07 David Rosenborg Branched into unified specification based on TD

extended with parts of TE. Added EBNF grammar
to TE section. Added blocked encoding. Renamed
groups in TE to segments to minimize conflicts
with the other uses of that word. Formalized the
concept of stop bit encoded entities.

1.x.02 2006-05-09 David Rosenborg Initial draft release
1.x.07 2006-08-17 David Rosenberg FAST Specification 1.1 candidate release and

request for comments
1.x.09 2006-12-05 David Rosenborg Minor clarifications, additions, and inclusion of

examples
1.x.1 2006-12-20 Final version approved by the Market Data

Optimization Working Group

FAST Specification 6 (44) 2006-12-20
 * *

1 Introduction
This document defines the structure and semantics of FAST, which is a binary encoding method for
message oriented data streams. FAST is an acronym for FIX Adapted for Streaming. Although the
original purpose of FAST was optimization of FIX messages, the encoding method defined in this
document has been generalized to apply to a wider set of protocols.

The encoding method reduces the size of a data stream on two levels. First, a concept referred to as Field
Operators allows data affinities of a stream to be leveraged and redundant data to be removed. Second,
serialization of the remaining data is accomplished through binary encoding which draws on self-
describing field lengths and bit maps indicating the presence or absence of fields.

The encoding is performed with respect to a control structure called a template. A template controls the
encoding of a portion of the stream by specifying the order and structure of fields, their field operators
and the binary encoding representations to use.

This specification defines a concrete syntax for template definitions. The purpose of the concrete syntax is
to provide a normative, full fidelity format that is both human and machine readable. It serves as the
default format for authoring, storing and interchanging FAST templates.

The concrete syntax in this specification is however not intended to be used on the wire when two end
points exchange template definitions over a FAST session. For wire transfers, the FAST Session Control
Protocol [SCP] provides a FAST serialization of the template structures defined by this document.

This document formally defines the concrete syntax as an XML structure using a schema language.

A processor (encoder or decoder) is not required to use the concrete syntax. A processor can for example
read template definitions encoded as FAST messages using SCP, or it can even have them hard coded in
the program.

A processor typically manages a set of templates. Even though the concrete syntax provides means for
defining either a single template or a set of templates in an XML document, this specification does not
define how to build or maintain sets or libraries of templates in general. A specific set of templates used
by a specific processor can even be defined using multiple simultaneous sources such as XML documents
and SCP messages.

The following fragment of XML is an example of a template definition in the concrete syntax.

<templates xmlns="http://www.fixprotocol.org/ns/template-definition"
 templateNs="http://www.fixprotocol.org/ns/templates/sample"
 ns="http://www.fixprotocol.org/ns/fix">
 <template name="MDRefreshSample">
 <typeRef name="MarketDataIncrementalRefresh"/>
 <string name="BeginString" id=”8”> <constant value="FIX4.4"/> </string>
 <string name="MessageType" id=”35”> <constant value="X"/> </string>
 <string name="SenderCompID" id=”49”> <copy/> </string>
 <uInt32 name="MsgSeqNum" id=”34”> <increment/> </uInt32>
 <sequence name="MDEntries">
 <length name="NoMDEntries" id=”268”/>
 <uInt32 name="MDUpdateAction" id=”279”> <copy/> </uInt32>
 <string name="MDEntryType" id=”269”> <copy/> </string>
 <string name="Symbol" id=”55”> <copy/> </string>
 <string name="SecurityType" id=”167”> <copy/> </string>
 <decimal name="MDEntryPx" id=”270”> <delta/> </decimal>
 <decimal name="MDEntrySize" id=”271”> <delta/> </decimal>
 <uInt32 name="NumberOfOrders" id=”346”> <delta/> </uInt32>
 <string name="QuoteCondition" id=”276”> <copy/> </string>
 <string name="TradeCondition" id=”277”> <copy/> </string>
 </sequence>
 </template>
</templates>

Appendix 3 contains more examples of the concrete syntax together with examples of the encoding of the
corresponding fields.

FAST Specification 7 (44) 2006-12-20
 * *

2 Terminology
The term encode refers to the process of serializing an instance of an application type to a FAST stream.

The term decode refers to the process of deserializing a part of a FAST stream into an instance of an
application type. This document does not always explicitly describe a decoding operation when it follows
trivially from the defined encoding operation.

This document defines encoding and decoding of FAST streams in terms of what may be considered a
processing model. This model is however to be treated as abstract. Implementations are free to implement
FAST encoding and decoding in any way as long as the result is the same as if this model was used.

3 Notation
This document uses the compact syntax of the RELAX NG schema language [RNC] to formally define
the XML structure for template definitions. Fragments of the schema are interleaved with descriptive text.
The complete schema that is available in Appendix 1 is extensible. In the schema fragments provided in
the text, the parts related to extensibility have been left out. A W3C XML Schema [XSD] version is
provided in Appendix 2.

Errors are labeled with an error identifier in brackets.

References are labeled with the corresponding identifier from the References section in brackets.

3.1 XML Namespace
The Template Definition (TD) namespace has the URI “http://www.fixprotocol.org/ns/fast/td/1.1”.
The prefix td: is used throughout this document for referring to elements in this namespace.

default namespace = "http://www.fixprotocol.org/ns/fast/td/1.1"

4 Error Handling
An error that is detected by solely examining a template definition is referred to as a static error. Encoders
and decoders must signal static errors and the template where the error occurred must be discarded.

When reading template definitions from an XML document it is a static error [ERR S1] if the document

• is not well-formed as defined in Extensible Markup Language [XML],

• does not conform to the constraints in Namespaces in XML [XMLNS],

• is not valid according to the schema as specified in Appendix 1.

An error that is detected when encoding or decoding a FAST stream is referred to as either a dynamic or
reportable error. Encoders and decoders must signal dynamic errors and are encouraged to signal reportable
errors but may refrain from doing so. A typical reason for not signaling reportable errors can be to achieve
better performance. To ensure interoperability, it is however recommended that all errors are signaled
during development and testing of implementations.

5 Application Types
An application type represents a type of a group or message in the application using FAST. This document
does not specify the structure of application types and treat them as abstract entities, but assumes that
they can be mapped to the following model.

• A group is a named type comprising an unordered set of fields.

FAST Specification 8 (44) 2006-12-20
 * *

• A field has a name and a type. The name must be unique within the group. The type can be a
primitive type, a sequence type or a group type.

• A sequence comprises a length and an ordered set of elements. Each element is of group type. This
specification does not require that all elements have identical group types. This may result in
heterogeneous sequences at the application level. A particular application of FAST may however
constrain this and require that all elements have the same type.

• The primitive types are ASCII string, Unicode string, uInt32, int32, uInt64, int64, decimal and byte
vector. The value domains of these are the same as for the corresponding types defined in this
document.

• A group appearing at the topmost level of a stream is also referred to as a message.

6 Templates
A template specifies how to encode an instance of an application type, or part thereof, as a stream of bytes.

Each template is identified by a name that is used when referring to a template either from the definition
of another template, or in an external context.

Templates do not constitute types in themselves but are associated with application types by reference.
There can be more than one template per application type1. It is also possible to create a template that can
be used for more than one application type.

A template is defined by the <td:template> element in the concrete syntax. A template definition
XML document can either contain a single template or a collection of templates. A collection of templates
must be enclosed in a <td:templates> element. This element can hold namespace attributes applicable
to the whole enclosed set of templates.

A template contains a sequence of instructions. The order of the instructions is significant and corresponds
to the order of the data in the stream. There are two categories of instructions: field instructions and template
reference instructions. Field instructions specify how to encode fields of the instance to the stream. Template
reference instructions provide means for defining parts of a template by reference to other templates.

start = templates | template
templates = element templates { nsAttr?, templateNsAttr?, dictionaryAttr?, template* }
template = element template { templateNsName, nsAttr?, dictionaryAttr?, typeRef?, instruction* }
instruction = field | templateRef

6.1 Instruction Context
Encoding and decoding takes place in the context of an instruction. The context consists of:

• a set of templates

• a current template

• a set of application types

• a current application type

• a set of dictionaries

• an optional initial value

The current application type is initially the special type any. The current application type changes when the
processor encounters an element containing a <td:typeRef> element. The new type is applicable to the

1 Having multiple templates for the same application type makes it possible to optimize for different uses of the type. As an

example, many FIX messages contain a wide variety of fields where only a few are used in combination. Using different
templates for each major combination is a more compact alternative to having one template with many optional members.

FAST Specification 9 (44) 2006-12-20
 * *

instructions contained within the element. The <td:typeRef> can appear in the <td:template>;
<td:group> and <td:sequence> elements.

typeRef = element typeRef { nameAttr, nsAttr?}

The current template is a reference to the template being processed. It is updated when a template
identifier is encountered in the stream. A static template reference can also change the current template as
described in the Template Reference Instruction section.

The dictionary set and initial value are described in the Operators section below.

6.2 Field Instructions
Each field instruction has a name and a type. The name identifies the corresponding field in the current
application type. The type specifies the basic encoding of the field. It is a dynamic error [ERR D1] if the
type of a instruction cannot be converted to, or from when decoding, the type of the corresponding
application field. See the section Type Conversion for permitted conversions.

The optional presence attribute indicates whether the field is mandatory or optional. If the attribute is
not specified, the field is mandatory.

A primitive field, i.e. a field that is not a group or sequence, can have a field operator. The operator
specifies an optimization operation for the field.

field = integerField | decimalField | asciiStringField | unicodeStringField | byteVectorField | sequence | group
fieldInstrContent = nsName, presenceAttr?, fieldOp?
presenceAttr = attribute presence { "mandatory" | "optional" }

6.2.1 Integer Field Instructions
Integer Numbers have unlimited size in the transfer encoding. However, applications typically use fixed
sizes for integers. An integer field instruction must therefore specify the bounds of the integer. The number
in the element name indicates the size in bits of the integer field instruction. The encoding and decoding
of a value is not affected by the size of the integer.

A leading “int” indicates that the field is signed and “uInt” indicates that the field is unsigned.

integerField =
 element int32 { fieldInstrContent }
 | element uInt32 { fieldInstrContent }
 | element int64 { fieldInstrContent }
 | element uInt64 { fieldInstrContent }

It is a dynamic error [ERR D2] if an integer in the stream is greater than the maximum value or less than
the minimum value for the specified type. The following table lists the minimum and maximum values
that can be represented by each integer type:

Type Min Max
int32 -2147483648 2147483647
uInt32 0 4294967295
int64 -9223372036854775808 9223372036854775807
uInt64 0 18446744073709551615

6.2.2 Decimal Field Instructions
A decimal field instruction indicates that the field is represented by two parts: an exponent and a mantissa.
The instruction can contain a field operator for the whole decimal or individual operators for the two
parts. If an operator is specified individually for the mantissa and/or the exponent, the operators are
applied individually to each part before the decimal number is combined. The field operator operands for

FAST Specification 10 (44) 2006-12-20
 * *

the exponent and mantissa are signed integers, int32 and int64 respectively. If no operator is specified or if
a single operator is specified for the entire decimal, the operand is a decimal number and is represented as
a Scaled Number in the transfer encoding.

Even though the exponent is treated as an int32, its allowed value range is [-63 … 63]. It is a reportable
error [ERR R1] if the exponent falls outside of this range after any operator has been applied.

When operators are applied individually, the exponent and mantissa parts have generated names unique to
the name of the decimal field. These names will be used as default values for the keys of the
corresponding operators.

If the decimal field has optional presence and has individual operators, the presence of the mantissa is
dependent on the presence of the exponent. See the section Presence Map and NULL Utilization for the
definition.

When using individual operators it is possible to limit the range and precision of a decimal. If for example
the constant operator is used for the exponent with a constant value of 2, it is not possible to encode 0.01
in this field. It is a dynamic error [ERR D3] if the value cannot be encoded in the field due to limitations
introduced by the use of an operator.

An initial value specified on an operator for a decimal field instruction will be normalized. This is
described in the Initial Values section below.

decimalField = element decimal { nsName, presenceAttr?, (fieldOp | decFieldOp) }
decFieldOp = element exponent { fieldOp }?, element mantissa { fieldOp }?

6.2.3 String Field Instruction
A string field instruction has an optional charset attribute indicating the character set used in the string.
There are two supported character sets: ASCII and Unicode, indicated by the attribute values “ascii” and
“unicode” respectively. If the attribute is not specified, the character set is ASCII. Depending on the
specified character set, the string is represented as an ASCII String or Unicode String in the transfer
encoding. If the character set is Unicode, an optional <td:length> element can be specified to associate a
name with the length preamble of the underlying byte vector.

asciiStringField = element string { fieldInstrContent, attribute charset { "ascii" }? }
unicodeStringField = element string { byteVectorLength?, fieldInstrContent, attribute charset { "unicode" } }

6.2.4 Byte Vector Field Instruction
A byte vector field instruction indicates that the field is represented as a Byte Vector in the transfer
encoding.

In the concrete syntax it is possible to associate a name with the length preamble of a byte vector by
specifying a <td:length> element. Logically this field is of type uInt32. The use of <td:length> does
not change how a byte vector is encoded in the stream, it just serves as a handle for the processor to
report the length back to an application.

byteVectorField = element byteVector { byteVectorLength?, fieldInstrContent }
byteVectorLength = element length { nsName }

6.2.5 Sequence Field Instruction
A sequence field instruction specifies that the field in the application type is of sequence type and that the
contained group of instructions should be used repeatedly to encode each element. If any instruction of
the group needs to allocate a bit in a presence map, each element is represented as a segment in the transfer
encoding.

A sequence has an associated length field containing an unsigned integer indicating the number of
encoded elements. When a length field is present in the stream, it must appear directly before the encoded

FAST Specification 11 (44) 2006-12-20
 * *

elements. The length field has a name, is of type uInt32 and can have a field operator. There are two styles
of naming:

• implicit – the name is generated and is unique to the name of the sequence field. The name is
guaranteed to never collide with a field name explicitly specified in a template.

• explicit – the name is explicitly specified in the template definition.

A sequence can be mandatory or optional. An optional sequence means that the length field is optional.

A sequence instruction is represented by the <td:sequence> element in the concrete syntax. It can
have an optional <td:length> child element, preceding any instructions. This element specifies the
properties of the length field. If it has a name attribute, the naming is explicit, otherwise it is implicit.

If no <td:length> element is specified, the length field has an implicit name and no field operator.

sequence = element sequence { nsName, presenceAttr?, dictionaryAttr?, typeRef?, length?, instruction* }
length = element length { nsName?, fieldOp? }

6.2.6 Group Field Instruction
A group field instruction associates a name and presence attribute with a group of instructions. If any
instruction of the group needs to allocate a bit in a presence map, the group is represented as a segment in
the transfer encoding.

It is not required that the current application type has a corresponding notion of a group. This means that
the fields resulting from decoding the group can possibly be flattened into one layer in the application
type.

The main purpose of the group field instruction is to enable a single bit in the presence map to indicate
the presence of a whole group of fields.

group = element group { nsName, presenceAttr?, dictionaryAttr?, typeRef?, instruction* }

6.3 Field Operators
Field operators specify ways to optimize the encoding of a field. Not all operators are applicable to all
field types. These constraints are however not always expressed in the schema, but are expressed in the
descriptive text for each operator. It is a static error [ERR S2] if an operator is specified for a field type for
which it is not applicable.

fieldOp = constant | \default | copy | increment | delta | tail

6.3.1 Dictionaries and Previous Values
Some operators rely on a previous value. Previous values are maintained in named dictionaries. A dictionary
has a set of entries. Each entry has a name and a typed value. The value can be in one of three states:
undefined, empty and assigned. All values are in the state undefined when processing starts. The state assigned
indicates that the previous value is present and empty indicates that it is absent. The state empty is only
applicable to optional fields. See the Presence Map and NULL Utilization section for details on when
empty is set.

The previous value in a dictionary for an operator is the value of the entry with the same name as its key.
The default key of an operator is the name of its field. An explicit key can be specified by the key
attribute. By specifying explicit keys, operators for fields with different names can share the same previous
value entry in a dictionary.

It is a dynamic error [ERR D4] if the field of an operator accessing an entry does not have the same type
as the value of the entry.

FAST Specification 12 (44) 2006-12-20
 * *

The dictionary name is specified by the dictionary attribute on the field operator element or where
allowed by the schema on ancestor elements. If there are more than one dictionary attribute in the
ancestry, the attribute of the nearest element applies. If the attribute is not specified, the global dictionary
is used.

There are three predefined dictionaries:

• template – the dictionary is local to the current template. This means that an operator in template
T1 will share the same dictionary as an operator in template T2 iff2 T1 = T2.

• type – the dictionary is local to the current application type. This means that an operator in
template T1 that is a template of application type A1 will share the same dictionary as an operator
in template T2 that is a template of application type A2 iff A1 = A2.

• global – the dictionary is global. All operators share the same dictionary regardless of the template
and application type.

All other dictionaries are referred to as user defined. Two operators will share the same user defined
dictionary iff they specify identical dictionary names.

A dictionary can be explicitly reset. Resetting a dictionary will set the state of all its entries to undefined.
This specification does not define how a reset is signaled to a decoder or encoder. It is however important
that resets appear in the same order in the encoder and decoder with respect to the order of the content
of the stream.

opContext = dictionaryAttr?, nsKey?, initialValueAttr?
dictionaryAttr = attribute dictionary { "template" | "type" | "global" | string }
nsKey = keyAttr, nsAttr?
keyAttr = attribute key { token }

6.3.2 Initial Values
An initial value is specified by the value attribute on the operator element. The value is a string of
Unicode characters. This value is converted to the type of the field as defined in the Converting from
String section below. The possible dynamic and reportable errors that may occur during conversion are
treated as static errors [ERR S3] when interpreting the initial value.

If the field is of type decimal, the value resulting from the conversion is normalized. The reason for this is
that the exponent and mantissa must be predictable when operators are applied to them individually. A
decimal value is normalized by adjusting the mantissa and exponent so that the integer remainder after
dividing the mantissa by 10 is not zero: mant % 10 ≠ 0. For example 100 * 100 would be normalized
as 1 * 102. If the mantissa is zero, the normalized decimal has a zero mantissa and a zero exponent.

initialValueAttr = attribute value { text }

6.3.3 Constant Operator
The constant operator specifies that the value of a field will always be the same. The value of the field is the
initial value. It is a static error [ERR S4] if the instruction context has no initial value.

The value of a constant field is never transferred.

The constant operator is applicable to all field types.

constant = element constant { initialValueAttr }

2 if and only if

FAST Specification 13 (44) 2006-12-20
 * *

6.3.4 Default Operator
The default operator specifies that the value of a field is either present in the stream or it will be the initial
value. Unless the field has optional presence, it is a static error [ERR S5] if the instruction context has no
initial value. If the field has optional presence and no initial value, the field is considered absent when
there is no value in the stream.

The default operator is applicable to all field types.

\default = element default { initialValueAttr? }

6.3.5 Copy Operator
The copy operator specifies that the value of a field is optionally present in the stream. If the value is
present in the stream it becomes the new previous value.

When the value is not present in the stream there are three cases depending on the state of the previous
value:

• assigned – the value of the field is the previous value.

• undefined – the value of the field is the initial value that also becomes the new previous value.
Unless the field has optional presence, it is a dynamic error [ERR D5] if the instruction context
has no initial value. If the field has optional presence and no initial value, the field is considered
absent and the state of the previous value is changed to empty.

• empty – the value of the field is empty. If the field is optional the value is considered absent. It is
a dynamic error [ERR D6] if the field is mandatory.

The copy operator is applicable to all field types.

copy = element copy { opContext }

6.3.6 Increment Operator
The increment operator specifies that the value of a field is optionally present in the stream. If the value is
present in the stream it becomes the new previous value.

When the value is not present in the stream there are three cases depending on the state of the previous
value:

• assigned – the value of the field is the previous value incremented by one. The incremented value
also becomes the new previous value.

• undefined – the value of the field is the initial value that also becomes the new previous value.
Unless the field has optional presence, it is a dynamic error [ERR D5] if the instruction context
has no initial value. If the field has optional presence and no initial value, the field is considered
absent and the state of the previous value is changed to empty.

• empty – the value of the field is empty. If the field is optional, the value is considered absent. It is
a dynamic error [ERR D6] if the field is mandatory.

The increment operator is applicable to integer field types.

An integer is incremented by adding one to it. If the value is the maximum value of the type it becomes
the minimum value after the increment.

increment = element increment { opContext }

FAST Specification 14 (44) 2006-12-20
 * *

6.3.7 Delta Operator
The delta operator specifies that a delta value is present in the stream. If the field has optional presence, the
delta value can be NULL. In that case the value of the field is considered absent. Otherwise the field is
obtained by combining the delta value with a base value.

delta = element delta { opContext }

The base value depends on the state of the previous value in the following way:

• assigned – the base value is the previous value.

• undefined – the base value is the initial value if present in the instruction context. Otherwise a
type dependant default base value is used.

• empty – it is a dynamic error [ERR D6] if the previous value is empty.

The following sections define the delta value representations, the default base values and how values are
combined depending on type.

6.3.7.1 Delta for Integers
The delta value is represented as an Integer Delta in the transfer encoding. The combined value is the sum
of the base and delta values.

The default base value for integers is 0.

It is a reportable error [ERR R4] if the combined value is less than the minimum value or greater than the
maximum value of the specific integer type.

NOTE: The size of the integer required for the delta may be larger than the specified size for the field
type. For example, if a field of type uInt32 has the base 4294967295 and the new value is 17 an int64 is
required to represent the delta -4294967278. However, this does not affect how the delta appears in
the stream.

6.3.7.2 Delta for Decimal
The delta value is represented as a Scaled Number Delta in the transfer encoding. The combined value is
calculated by individually adding the exponent and the mantissa of the delta to their base value
counterparts.

It is a reportable error [ERR R1] if the combined exponent is less than -63 or greater than 63, or if the
combined mantissa exceeds the value range of an int64.

The default base value for decimal is 0. The exponent of the default base value is 0.

NOTE: Since the delta operator for decimals comprises individual deltas for the exponent and
mantissa, an implementation must store the previous value of a decimal in such a way that the layout in
exponent and mantissa parts is preserved or can be recreated when processing the next field.

6.3.7.3 Delta for ASCII Strings
The delta value is represented as an ASCII String Delta in the transfer encoding. The subtraction length of
the delta specifies the number of characters to remove from the front or back of the base value.
Characters are removed from the front when the subtraction length is negative. The string part of the
delta value represents the characters to add to the same end of the base value as specified by the sign of
the subtraction length.

The subtraction length uses an excess-1 encoding: if the value is negative when decoding, it is incremented
by one to get the number of characters to subtract. This makes it possible to encode negative zero as -1,
which can be used to encode an operation that adds to the front without removing any characters.

FAST Specification 15 (44) 2006-12-20
 * *

The default base value is the empty string

It is a dynamic error [ERR D7] if the subtraction length is larger than the number of characters in the base
value, or if it does not fall in the value range of an int32.

6.3.7.4 Delta for Unicode Strings
The delta value for Unicode strings is structurally equivalent with the delta value for byte vectors with the
additional constraint that the content of the byte vector in the delta is UTF-8 bytes. The delta operates on
the encoded bytes as opposed to the Unicode characters. As a consequence, a delta value may end in an
incomplete UTF-8 byte sequence. It is a reportable error [ERR R2] if the combined value is not a valid
UTF-8 sequence.

6.3.7.5 Delta for Byte Vectors
The delta is represented as a Byte Vector Delta in the transfer encoding. The subtraction length of the
delta specifies the number of bytes to remove from the front or back of the base value. Bytes are removed
from the front when the subtraction length is negative. The byte vector part of the delta value represents
the bytes to add to the same end of the base value as specified by the sign of the leading subtraction
length.

The subtraction length uses the same excess-1 encoding as for ASCII strings: if the value is negative when
decoding, it is incremented by one to get the number of characters to subtract.

The default base value is the empty byte vector.

It is a dynamic error [ERR D7] if the subtraction length is larger than the number of bytes in the base
value, or if it exceeds the value range of an int32.

6.3.8 Tail Operator
The tail operator specifies that a tail value is optionally present in the stream.

If the field has optional presence, the tail value can be NULL. In that case the value of the field is
considered absent. Otherwise, if the tail value is present, the value of the field is obtained by combining the
tail value with a base value.

The base value depends on the state of the previous value in the following way:

• assigned – the base value is the previous value.

• undefined – the base value is the initial value if present in the instruction context. Otherwise a
type dependant default base value is used.

• empty – the base value is the initial value if present in the instruction context. Otherwise a type
dependant default base value is used.

The combined value becomes the new previous value.

If the tail value is not present in the stream, the value of the field depends on the state of the previous
value in the following way:

• assigned – the value of the field is the previous value.

• undefined – the value of the field is the initial value that also becomes the new previous value.
Unless the field has optional presence, it is a dynamic error [ERR D6] if the instruction context
has no initial value. If the field has optional presence and no initial value, the field is considered
absent and the state of the previous value is changed to empty.

• empty – the value of the field is empty. If the field is optional the value is considered absent. It is
a dynamic error [ERR D7] if the field is mandatory.

In the concrete syntax the tail operator is represented by the <td:tail> element:

FAST Specification 16 (44) 2006-12-20
 * *

tail = element tail { opContext }

The following sections define the tail value representations, the default base values and how values are
combined depending on type. The tail operator is only applicable to these types.

6.3.8.1 Tail for ASCII Strings
The tail value is represented as an ASCII String in the transfer encoding. The length of the string specifies
the number of characters to remove from the back of the base value. The tail value represents the
characters to append to the remaining string

If the length of the tail value exceeds the length of the base value, the combined value becomes the tail
value.

The default base value is the empty string

6.3.8.2 Tail for Unicode Strings
The tail value for Unicode strings is structurally equivalent with the tail value for byte vectors with the
additional constraint that the content of the byte vector in the delta is UTF-8 bytes. The tail operator
operates on the encoded bytes as opposed to the Unicode characters. As a consequence, a tail value may
end in an incomplete UTF-8 byte sequence. It is a reportable error [ERR R2] if the combined value is not
a valid UTF-8 sequence.

6.3.8.3 Tail for Byte Vectors
The tail value is represented as a Byte Vector in the transfer encoding. The length of the tail value
specifies the number of bytes to remove from the back of the base value. The tail value represents the
bytes to append to the remaining byte vector.

If the length of the tail value exceeds the length of the base value, the combined value becomes the tail
value.

The default base value is the empty byte vector.

6.4 Template Reference Instruction
The template reference instruction specifies that a part of the template is specified by another template. A
template reference can be either static or dynamic. A reference is static when a name is specified in the
instruction. Otherwise it is dynamic.

A static reference specifies that processing should continue with the referred template as the current
template. A static reference does not imply that there is a presence map or template identifier in the
stream. It is a dynamic error [ERR D8] if no template exists with the specified name.

A dynamic reference specifies that a presence map and a template identifier are present in the stream. The
processing continues with the template indicated by the identifier as the current template. The
representation in the transfer encoding is a segment. It is a dynamic error [ERR D9] if no template is
associated with the template identifier appearing in the stream.

When processing reaches the end of the referred static or dynamic template, it continues at the point after
the referring instruction and the current template is restored.

templateRef = element templateRef { (nameAttr, templateNsAttr?)? }

7 Names
A name in a template definition consists of two parts, a namespace URI and a local name.

FAST Specification 17 (44) 2006-12-20
 * *

The namespace URI for application types, fields and operator keys is specified by the ns attribute which
can appear either on the same element as the local name or on any ancestor element. If there are more
than one ns attribute in the ancestry, the attribute of the nearest element applies. If no ns attribute is
specified the namespace URI is the empty string.

The namespace URI for templates is specified by the templateNs attribute that is inherited in the same
way as the ns attribute. The reason for having a separate attribute for template names is that message and
field names often share the same standardized namespace whereas template names are likely to be put in a
vendor specific namespace.

The fact that a namespace is a URI does not mean that it must point to a resource. The motivation of a
URI in this context is simply to constrain the syntax and to encourage the use of, for example, company
or organization URLs to make namespaces universally unique.

The attribute name specifies a local name.

Two names are equal iff their namespace identifiers are equal and their local names are equal.

nsName = nameAttr, nsAttr?, idAttr?
templateNsName = nameAttr, templateNsAttr?, idAttr?
nameAttr = attribute name { token }
nsAttr = attribute ns { text }
templateNsAttr = attribute templateNs { text }
idAttr = attribute id { token }

7.1 Auxiliary Identifiers
Any component that can have a name and is not a reference can also have an auxiliary identifier. The
identifier is specified by the id attribute. This specification does not define any semantics for the use of
auxiliary identifiers. Nor does it specify the scope of identifiers. However, a particular communication
protocol adapted to FAST may choose to constrain the use of auxiliary identifiers.

For example, when using FIX over FAST, a typical use of auxiliary identifiers would be to specify the FIX
tag number on each field. Another possible use of auxiliary identifiers would be to assign static template
identifiers to be used in the communication between two parties that do not support dynamic template
exchange and identifier assignment.

NOTE: The fact that this specification provides a way to specify auxiliary identifiers in-band does not
imply that there cannot be other in-band (through foreign elements or attributes, see the Extensibility
section) or out-of-band schemes for mapping auxiliary identifiers to names of components. The id
attribute is provided for convenience.

8 Type Conversion
When the type of a field in a template differs from the type of the corresponding field in the current
application type, values must be converted when the field is encoded and decoded. This section defines
the conversion between pairs of different types.

Byte vectors can only be converted to and from strings. All other conversion with byte vectors are
dynamic errors [ERR D10].

8.1 Converting from String
In the following sections the term whitespace trimmed refers to the operation where any leading or trailing
whitespace is removed before the string is interpreted. The following characters in ASCII hexadecimal are
considered to be whitespace: 20 (space), 09 (horizontal tab), 0D (carriage return), and 0A (linefeed).

It is a dynamic error [ERR D11] if a string does not match the syntax specified by the following sections.

FAST Specification 18 (44) 2006-12-20
 * *

NOTE: Although the syntax for signed integers and decimals allows negative zeroes like -0 and -0.0,
these values will be normalized to their positive counterparts. Negative zeroes cannot be represented in
a FAST stream.

8.1.1 Converting to Integers
The string is interpreted as a sequence of digits ’0’ – ’9’. If the type is signed, a leading minus is allowed to
indicate a negative number. The literal is whitespace trimmed. It is a reportable error [ERR R4] if the
resulting number does not fit within the specified size of the integer. The string “4711” would for example
cause an error if the type was int8.

8.1.2 Converting to Decimal
The string has an integer part and a decimal part. It is allowed to specify either or both of them. If both
are specified, a decimal period must appear between them. If only the decimal part is specified, a decimal
period must appear before it. A leading minus sign indicates a negative number. Example: 1, 1.1, .1 and -
0.1 are allowed representations. The literal is whitespace trimmed. It is a reportable error [ERR R1] if the
conversion would result in an exponent less than -63 or greater than 63 or if the mantissa does not fit in
the range of an int64.

8.1.3 Converting to Byte Vector
The string is interpreted as an even number of hexadecimal digits [0-9A-Fa-f] possibly interleaved with
whitespace. The literal is turned into a byte vector by first stripping any whitespace. Then each pair of
characters is interpreted as a hexadecimal number representing a single byte.

8.1.4 Converting Between Character Sets
An ASCII string is trivially converted to a Unicode string since ASCII is a subset of Unicode. A Unicode
string can be converted to an ASCII string if it only contains ASCII characters. Otherwise it is a
reportable error [ERR R3].

8.2 Converting from Integers

8.2.1 Converting to Integers
Integers of different types can be converted to each other as long as there is no loss of precision. It is a
reportable error [ERR R4] if the value cannot be represented in the target type. A negative value can for
example not be converted to an unsigned type.

8.2.2 Converting to Decimal
An integer can be converted to decimal if it can be represented as a scaled number with an exponent in
the range [-63 … -63] and an int64 mantissa. Otherwise it is a reportable error [ERR R1].

8.2.3 Converting to String
The number is represented as a sequence of digits ‘0’ – ‘9’. The number must not have any leading zeroes.
If the type is signed and the number is negative the sequence of digits is preceded by a minus sign (‘-‘).

FAST Specification 19 (44) 2006-12-20
 * *

8.3 Converting from Decimal

8.3.1 Converting to Integers
A decimal can be converted to an integer iff it has no decimal part. That is, the value is in fact an integer.
It is a reportable error [ERR R5] if the value is in fact not an integer.

8.3.2 Converting to String
If the number is in fact an integer, it is converted as if was of integer type. Otherwise the number is
represented by an integer part and a decimal part separated by a decimal point (‘.’). Each part is a sequence
of digits ‘0’ – ‘9’. There must be at least one digit on each side of the decimal point. If the number is
negative it is preceded by a minus sign (‘-‘). The integer part must not have any leading zeroes.

8.4 Converting from Byte Vector to String
The byte vector is represented as a sequence of an even number of hexadecimal digits [0-9a-f]. Each pair
is a hexadecimal number representing a byte in the vector.

9 Extensibility
Application specific data can be added to a template definition in the XML format by using foreign
attributes and elements. Any element in the schema may have foreign attributes and foreign child
elements. A foreign attribute is an attribute with a name whose namespace URI is neither the empty string
nor the TD namespace URI. A foreign element is an element with a name whose namespace URI is not
the TD namespace URI. Foreign child elements may be placed freely with respect to other child elements.
There are no restrictions on the content of foreign attributes and elements.

The extensibility parts are implemented in the schema using the other pattern which is placed at the
relevant places in the schema using the interleave operator.

other = foreignAttr*, foreignElm*
foreignElm = element * - td:* { any }
foreignAttr = attribute * - (local:* | td:*) { text }
any = attribute * { text }*, (text | element * { any })*

10 Transfer Encoding
The following EBNF grammar specifies the overall structure of a FAST stream. Terminal symbols are in
italics. The start symbol is stream.

stream ::= message* | block*
block ::= BlockSize message+
message ::= segment
segment ::= PresenceMap TemplateIdentifier? (field | segment)*
field ::= integer | string | delta | ScaledNumber | ByteVector
integer ::= UnsignedInteger | SignedInteger
string ::= ASCIIString | UnicodeString
delta ::= IntegerDelta | ScaledNumberDelta | ASCIIStringDelta |
 ByteVectorDelta

A FAST stream consists of a sequence of messages or a sequence of blocks. This specification does not
provide a way of saying which style is used for a particular stream. Thus this must be agreed upon
between the producer and consumer of the encoded data.

A block is a sequence of one or more messages. A block has a leading block size specifying the number of
bytes occupied by the messages of the block. It is a dynamic error [ERR D12] if a block has zero size. The

FAST Specification 20 (44) 2006-12-20
 * *

block size is represented as an Unsigned Integer which may be overlong. The overlong property is defined
in the Integer Numbers section below.

Each message is represented as a segment, a message segment.

A segment has a header consisting of a Presence Map followed by an optional Template Identifier. The
segment has a template identifier either if it is a message segment, or if the segment appears as the result
of a dynamic template reference instruction. A template identifier is encoded as if a copy operator was
specified. The operator uses the global dictionary and has an internal key common to all template
identifier fields. This means that a segment with a template identifier does not always contain the template
identifier physically. However, the first bit in the presence map is allocated by its copy operator.

The body of a segment is a sequence of fields and possible sub segments. The extent of a segment is
defined by the template and is dependent on the settings in the presence map.

10.1 Byte and Bit Ordering
All integer fields are represented using the big-endian convention, where bits and bytes are in network
byte order, where high order bits precede low order bits, and high order bytes precede low order bytes.

10.2 Stop Bit Encoded Entities
An important property of the FAST transfer encoding is the use of stop bit encoded entities. A stop bit
encoded entity is a sequence of bytes where the most significant bit in each byte indicates whether the
next byte is part of the entity. If the bit is not set, the next byte belongs to the entity, otherwise it is the
last byte. The seven bits following the stop bit are significant data bits. The entity value of a stop bit encoded
entity is the concatenation of the significant data bits of each byte. The number of bits in the entity value
is always a multiple of seven. The minimum length of an entity value is seven bits.

10.3 Template Identifier
A template identifier is represented as an Unsigned Integer in the stream. It is a reportable error [ERR R6]
if it is overlong.

It is a dynamic error [ERR D9] if a decoder cannot find a template associated with a template identifier
appearing in the stream.

This specification does not define how to map an identifier to the name of a template. A particular
implementation may choose to use statically allocated template identifiers. In this case, auxiliary identifiers
in the concrete syntax can be used to convey the mapping. Other implementations may choose to allocate
template identifiers dynamically using for example the Session Control Protocol [SCP].

10.4 Nullability
Each field has a type that has a nullability property. If a type is nullable, there is a special representation of a
NULL value. When a type is non-nullable, no representation for NULL is reserved. All nullable types are
constructed in such a way that NULL is represented as a 7-bit entity value where all bits are zero. It is
represented as 0x80 when stop bit encoded.

Unless explicitly specified, non-nullable representations are used.

10.5 Presence Map
A presence map is a sequence of bits. Fields of the segment of the presence map utilize the bits as
specified by the current template.

A presence map is represented as a stop bit encoded entity. Logically a presence map has an infinite suffix
of zeroes. This makes it possible to truncate a presence map that ends in a sequence where the bits are all
zero. The length of the remaining part must be a multiple of seven.

FAST Specification 21 (44) 2006-12-20
 * *

A presence map is overlong if it has more than seven bits and ends in seven or more bits that are all zero.
It is a reportable error [ERR R7] if a presence map is overlong. It is a reportable error [ERR R8] if a
presence map contains more bits than required by the instructions that utilize it.

10.5.1 Presence Map and NULL Utilization
Bits in the presence map are allocated in field entry order. That is, instructions appearing earlier in a
template will allocate bits of higher order than those appearing later. Bits are allocated in the presence map
of the current segment.

NOTE: The type of a length field of a sequence is uInt32, as specified by section 6.2.5. This means that
any encoding rule that is applicable to an unsigned integer field is also applicable to the length field of a
sequence.

A field will not occupy any bit in the presence map if it is mandatory and has the constant operator.

An optional field with the constant operator will occupy a single bit. If the bit is set, the value is the initial
value in the instruction context. If the bit is not set, the value is considered absent.

If a field is mandatory and has no field operator, it will not occupy any bit in the presence map and its
value must always appear in the stream.

If a group field is optional, it will occupy a single bit in the presence map. The contents of the group may
appear in the stream iff the bit is set. The instructions in the group are not processed if the bit is not set.
This means that the previous values of fields in the group are not affected by an absent group. If the
application representation of a message has no notion of groups, each field of an absent group is
considered absent.

If a field is optional and has no field operator, it is encoded with a nullable representation and the NULL
is used to represent absence of a value. It will not occupy any bits in the presence map.

The default, copy, and increment operators have the following presence map and NULL utilization:

• Mandatory integer, decimal, string and byte vector fields – one bit. If set, the value appears in the
stream.

• Optional integer, decimal, string and byte vector fields – one bit. If set, the value appears in the
stream in a nullable representation. A NULL indicates that the value is absent and the state of the
previous value is set to empty, except when the default operator is used in which case the state of
the previous value is left unchanged.

The delta operator has the following presence map utilization:

• Mandatory integer, decimal, string and byte vector fields – no bit.

• Optional integer, decimal, string and byte vector fields – no bit. The delta appears in the stream in
a nullable representation. A NULL indicates that the delta is absent. Note that the previous value
is not set to empty but is left untouched if the value is absent.

The tail operator has the following presence map utilization:

• Mandatory string and byte vector fields – one bit.

• Optional string and byte vector fields – one bit. The tail value appears in the stream in a nullable
representation. A NULL indicates that the value is absent and the state of the previous value is set
to empty.

Decimal fields with individual operators have the following utilization:

• If the decimal has mandatory presence, the exponent and mantissa fields are treated as two
separate mandatory integer fields as described above.

• If the decimal has optional presence, the exponent field is treated as an optional integer field and
the mantissa field is treated as a mandatory integer field. The presence of the mantissa field and

FAST Specification 22 (44) 2006-12-20
 * *

any related bits in the presence map are dependent on the presence of the exponent. The
mantissa field appears in the stream iff the exponent value is considered present. If the mantissa
has an operator that requires a bit in the presence map, this bit is present iff the exponent value is
considered present.

10.6 Fields

10.6.1 Integer Numbers
Integers are represented as stop bit encoded entities. An integer is overlong if the entity value still represents
the same integer after removing seven or more of the most significant bits. Unless the integer is used as a
block size, it is a reportable error [ERR R6] if an overlong integer number appears in the stream.

If an integer is nullable, every non-negative integer is incremented by 1 before it is encoded. The NULL
representation of a nullable integer is a 7-bit entity value where all bits are zero.

NOTE: The encoding of a nullable integer may require more bits than the maximum number of bits
specified in the integer type. For example, the nullable representation of the maximum 32 bit unsigned
integer 4294967295 is 4294967296, which would be encoded as 0x10 0x00 0x00 0x00 0x80, and
requires 33 significant bits in the entity value.

10.6.1.1 Signed Integer
The entity value is a two’s complement integer representation [TWOC]. The most significant data bit of
the entity value is the sign bit.

NOTE: Since the most significant bit of the entity value is the sign bit, there are some situations where
the seven most significant bits of the entity value must all be zeroes. For example, if the value to
encode is 64, which has the binary representation 01000000, the stop bit encoding must be 0x00 0xC0.
If we did not have the extra seven leading zero bits, the most significant bit, which is also the sign bit,
would be one, and thus the encoding would incorrectly represent -64.

10.6.1.2 Unsigned Integer
The entity value is the binary representation of the integer.

10.6.2 Scaled Number
Scaled numbers, like floating point numbers are represented as a mantissa and an exponent.

Floating point numbers use a base-2 exponent for computational efficiency reasons, while scaled numbers
use a base-10 exponent in order to support exact representation of decimal numbers.

number = mant * 10
exp

The numerical value is obtained by multiplying the mantissa with the base-10 power of the exponent.

A scaled number is represented as a Signed Integer exponent followed by a Signed Integer mantissa.

If a scaled number is nullable, the exponent is nullable and the mantissa is non-nullable. A NULL scaled
number is represented as a NULL exponent. The mantissa is present in the stream iff the exponent is not
NULL.

10.6.3 ASCII String
An ASCII String is represented as a stop bit encoded entity. The entity value is interpreted as a sequence
of 7-bit ASCII characters.

A sequence of bits starting with seven zero bits is referred to as having a zero-preamble. A string that starts
with a zero-preamble consists of the bits that remain after removing the preamble. A string is overlong if

FAST Specification 23 (44) 2006-12-20
 * *

there are bits left after removing the preamble and the first seven of those bits are not all zero. It is a
reportable error [ERR R9] if an overlong string appears in the stream.

If a string has a zero-preamble and there are no bits left after removing the preamble, it represents the
empty string.

If an ASCII String is nullable, an additional zero-preamble is allowed at the start of the string. The bits
that follow are interpreted as a non-nullable string, including a possible zero preamble. If there are no
remaining bits after removing the preamble the value represents the NULL string.

The following table summarizes the use of zero-preambles:

Entity value Nullable Description
0x00 Empty string
0x00 0x00 “\0”
0x00 0x41 “A”, Overlong
0x00 Yes NULL
0x00 0x00 Yes Empty String
0x00 0x41 Yes “A”, Overlong
0x00 0x00 0x00 Yes “\0”
0x00 0x00 0x41 Yes “A”, Overlong

10.6.4 Unicode String
A Unicode String is represented as a Byte Vector containing the UTF-8 encoded representation of the
string. UTF-8 is defined in the Unicode 3.2 [UNICODE] standard. If a Unicode String is nullable, it is
represented by a nullable Byte Vector.

10.6.5 Byte Vector
A byte vector field is represented as an Unsigned Integer size preamble followed by the specified number
of raw bytes. Each byte in the data part has eight significant data bits. As a consequence, the data part is
not stop bit encoded.

A nullable byte vector has a nullable size preamble. The NULL byte vector is represented by a NULL size
preamble.

10.7 Delta

10.7.1 Integer Delta
The delta value is represented as a Signed Integer. A nullable integer delta is represented by a nullable
Signed Integer.

10.7.2 Scaled Number Delta
The delta value is represented as two Signed Integers. The first integer is the delta for the exponent and
the second is the delta for the mantissa. If the delta is nullable, it has a nullable exponent delta and a non-
nullable mantissa delta. A NULL delta is represented as a NULL exponent delta. The mantissa delta is
present in the stream iff the exponent delta is not NULL.

FAST Specification 24 (44) 2006-12-20
 * *

10.7.3 ASCII String Delta
The delta value is represented as a Signed Integer subtraction length followed by an ASCII String. If the
delta is nullable, the subtraction length is nullable. A NULL delta is represented as a NULL subtraction
length. The string part is present in the stream iff the subtraction length is not NULL.

10.7.4 Byte Vector Delta
The delta value is represented as a Signed Integer subtraction length followed by a Byte Vector. If the
delta is nullable, the subtraction length is nullable. A NULL delta is represented as a NULL subtraction
length. The byte vector part is present in the stream iff the subtraction length is not NULL.

FAST Specification 25 (44) 2006-12-20
 * *

Appendix 1 RELAX NG Schema
default namespace td = "http://www.fixprotocol.org/ns/fast/td/1.1"
namespace local = ""

start = templates | template

templates = element templates { (nsAttr?, templateNsAttr?, dictionaryAttr?, template*) & other }

template = element template { (templateNsName, nsAttr?, dictionaryAttr?, typeRef?, instruction*) & other }

typeRef = element typeRef { nameAttr, nsAttr?, other }

instruction = field | templateRef

fieldInstrContent = (nsName, presenceAttr?, fieldOp?) & other

field = integerField | decimalField | asciiStringField | unicodeStringField | byteVectorField | sequence | group

integerField =
element int32 { fieldInstrContent }
| element uInt32 { fieldInstrContent }
| element int64 { fieldInstrContent }
| element uInt64 { fieldInstrContent }

decimalField = element decimal { (nsName, presenceAttr?, (fieldOp | decFieldOp)) & other }

decFieldOp = element exponent { fieldOp & other }?, element mantissa { fieldOp & other }?

asciiStringField = element string { fieldInstrContent, attribute charset { "ascii" }? }
unicodeStringField = element string { byteVectorLength?, fieldInstrContent, attribute charset { "unicode" } }

byteVectorField = element byteVector { byteVectorLength?, fieldInstrContent }
byteVectorLength = element length { nsName }

sequence = element sequence { (nsName, presenceAttr?, dictionaryAttr?, typeRef?, length?, instruction*) & other }

length = element length { (nsName?, fieldOp?) & other }

group = element group { (nsName, presenceAttr?, dictionaryAttr?, typeRef?, instruction*) & other }

fieldOp = constant | \default | copy | increment | delta | tail

constant = element constant { initialValueAttr & other }

\default = element default { initialValueAttr? & other }

copy = element copy { opContext }

increment = element increment { opContext }

delta = element delta { opContext }

tail = element tail { opContext }

initialValueAttr = attribute value { text }

opContext = (dictionaryAttr?, nsKey?, initialValueAttr?) & other

dictionaryAttr = attribute dictionary { "template" | "type" | "global" | string }

nsKey = keyAttr, nsAttr?

keyAttr = attribute key { token }

templateRef = element templateRef { (nameAttr, templateNsAttr?)?, other }

presenceAttr = attribute presence { "mandatory" | "optional" }

nsName = nameAttr, nsAttr?, idAttr?

templateNsName = nameAttr, templateNsAttr?, idAttr?

nameAttr = attribute name { token }

nsAttr = attribute ns { text }

templateNsAttr = attribute templateNs { text }

idAttr = attribute id { token }

other = foreignAttr*, foreignElm*

foreignElm = element * - td:* { any }

foreignAttr = attribute * - (local:* | td:*) { text }

any = attribute * { text }*, (text | element * { any })*

FAST Specification 26 (44) 2006-12-20
 * *

Appendix 2 W3C XML Schema (Non-Normative)
This schema is an automatic translation of the normative RELAX NG schema and is only an
approximation of the original. This is because XML Schema is less expressive than RELAX NG. As a
result, this schema is more permissive than the original.
<xs:schema xmlns:td="http://www.fixprotocol.org/ns/fast/td/1.1" xmlns:xs="http://www.w3.org/2001/XMLSchema"
elementFormDefault="qualified" targetNamespace="http://www.fixprotocol.org/ns/fast/td/1.1">

 <xs:element name="templates">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:element ref="td:template"/>
 <xs:group ref="td:other"/>
 </xs:choice>
 <xs:attribute name="ns"/>
 <xs:attribute name="templateNs"/>
 <xs:attribute name="dictionary">
 <xs:simpleType>
 <xs:union memberTypes="xs:string">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="template"/>
 <xs:enumeration value="type"/>
 <xs:enumeration value="global"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:attribute>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="template">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element ref="td:typeRef"/>
 <xs:group ref="td:instruction"/>
 </xs:choice>
 <xs:group ref="td:other"/>
 </xs:choice>
 <xs:attributeGroup ref="td:templateNsName"/>
 <xs:attribute name="ns"/>
 <xs:attribute name="dictionary">
 <xs:simpleType>
 <xs:union memberTypes="xs:string">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="template"/>
 <xs:enumeration value="type"/>
 <xs:enumeration value="global"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:attribute>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="typeRef">
 <xs:complexType>
 <xs:group ref="td:other"/>
 <xs:attributeGroup ref="td:nameAttr"/>
 <xs:attribute name="ns"/>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:group name="instruction">
 <xs:choice>
 <xs:group ref="td:field"/>
 <xs:element ref="td:templateRef"/>
 </xs:choice>
 </xs:group>

 <xs:group name="fieldInstrContent">
 <xs:sequence>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:group ref="td:fieldOp"/>
 <xs:group ref="td:other"/>
 </xs:choice>
 </xs:sequence>
 </xs:group>

 <xs:attributeGroup name="fieldInstrContent">
 <xs:attributeGroup ref="td:nsName"/>
 <xs:attribute name="presence">
 <xs:simpleType>
 <xs:restriction base="xs:token">

FAST Specification 27 (44) 2006-12-20
 * *

 <xs:enumeration value="mandatory"/>
 <xs:enumeration value="optional"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attributeGroup ref="td:other"/>
 </xs:attributeGroup>

 <xs:group name="field">
 <xs:choice>
 <xs:group ref="td:integerField"/>
 <xs:element ref="td:decimal"/>
 <xs:group ref="td:stringField"/>
 <xs:element ref="td:byteVector"/>
 <xs:element ref="td:sequence"/>
 <xs:element ref="td:group"/>
 </xs:choice>
 </xs:group>

 <xs:complexType name="integerField">
 <xs:group ref="td:fieldInstrContent"/>
 <xs:attributeGroup ref="td:fieldInstrContent"/>
 </xs:complexType>

 <xs:group name="integerField">
 <xs:choice>
 <xs:element ref="td:int32"/>
 <xs:element ref="td:uInt32"/>
 <xs:element ref="td:int64"/>
 <xs:element ref="td:uInt64"/>
 </xs:choice>
 </xs:group>

 <xs:element name="int32" type="td:integerField"/>
 <xs:element name="uInt32" type="td:integerField"/>
 <xs:element name="int64" type="td:integerField"/>
 <xs:element name="uInt64" type="td:integerField"/>

 <xs:element name="decimal">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:group ref="td:fieldOp"/>
 <xs:choice>
 <xs:element ref="td:exponent"/>
 <xs:element ref="td:mantissa"/>
 </xs:choice>
 </xs:choice>
 <xs:group ref="td:other"/>
 </xs:choice>
 <xs:attributeGroup ref="td:nsName"/>
 <xs:attribute name="presence">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="mandatory"/>
 <xs:enumeration value="optional"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="exponent">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:group ref="td:fieldOp"/>
 <xs:group ref="td:other"/>
 </xs:choice>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="mantissa">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:group ref="td:fieldOp"/>
 <xs:group ref="td:other"/>
 </xs:choice>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:group name="stringField">
 <xs:sequence>
 <xs:element name="string">
 <xs:complexType>
 <xs:sequence>
 <xs:group minOccurs="0" ref="td:byteVectorLength"/>
 <xs:group ref="td:fieldInstrContent"/>
 </xs:sequence>
 <xs:attributeGroup ref="td:fieldInstrContent"/>
 <xs:attribute name="charset">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="ascii"/>

FAST Specification 28 (44) 2006-12-20
 * *

 <xs:enumeration value="unicode"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:group>

 <xs:element name="byteVector">
 <xs:complexType>
 <xs:sequence>
 <xs:group minOccurs="0" ref="td:byteVectorLength"/>
 <xs:group ref="td:fieldInstrContent"/>
 </xs:sequence>
 <xs:attributeGroup ref="td:fieldInstrContent"/>
 </xs:complexType>
 </xs:element>

 <xs:group name="byteVectorLength">
 <xs:sequence>
 <xs:element name="length">
 <xs:complexType> <xs:attributeGroup ref="td:nsName"/> </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:group>

 <xs:element name="sequence">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element ref="td:typeRef"/>
 <xs:group ref="td:length"/>
 <xs:group ref="td:instruction"/>
 </xs:choice>
 <xs:group ref="td:other"/>
 </xs:choice>
 <xs:attributeGroup ref="td:nsName"/>
 <xs:attribute name="presence">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="mandatory"/>
 <xs:enumeration value="optional"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="dictionary">
 <xs:simpleType>
 <xs:union memberTypes="xs:string">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="template"/>
 <xs:enumeration value="type"/>
 <xs:enumeration value="global"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:attribute>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:group name="length">
 <xs:sequence>
 <xs:element name="length">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:group ref="td:fieldOp"/>
 <xs:group ref="td:other"/>
 </xs:choice>
 <xs:attribute name="name" type="xs:token"/>
 <xs:attribute name="ns"/>
 <xs:attribute name="id" type="xs:token"/>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
 </xs:group>

 <xs:element name="group">
 <xs:complexType>
 <xs:choice minOccurs="0" maxOccurs="unbounded">
 <xs:choice>
 <xs:element ref="td:typeRef"/>
 <xs:group ref="td:instruction"/>
 </xs:choice>
 <xs:group ref="td:other"/>
 </xs:choice>
 <xs:attributeGroup ref="td:nsName"/>
 <xs:attribute name="presence">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="mandatory"/>
 <xs:enumeration value="optional"/>
 </xs:restriction>

FAST Specification 29 (44) 2006-12-20
 * *

 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="dictionary">
 <xs:simpleType>
 <xs:union memberTypes="xs:string">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="template"/>
 <xs:enumeration value="type"/>
 <xs:enumeration value="global"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:attribute>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:group name="fieldOp">
 <xs:choice>
 <xs:element ref="td:constant"/>
 <xs:element ref="td:default"/>
 <xs:element ref="td:copy"/>
 <xs:element ref="td:increment"/>
 <xs:element ref="td:delta"/>
 <xs:element ref="td:tail"/>
 </xs:choice>
 </xs:group>

 <xs:element name="constant">
 <xs:complexType>
 <xs:group ref="td:other"/>
 <xs:attributeGroup ref="td:initialValueAttr"/>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="default">
 <xs:complexType>
 <xs:group ref="td:other"/>
 <xs:attribute name="value"/>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:element name="copy" type="td:opContext"/>
 <xs:element name="increment" type="td:opContext"/>
 <xs:element name="delta" type="td:opContext"/>
 <xs:element name="tail" type="td:opContext"/>

 <xs:attributeGroup name="initialValueAttr"> <xs:attribute use="required" name="value"/> </xs:attributeGroup>

 <xs:complexType name="opContext">
 <xs:group ref="td:other"/>
 <xs:attribute name="dictionary">
 <xs:simpleType>
 <xs:union memberTypes="xs:string">
 <xs:simpleType>
 <xs:restriction base="xs:token">
 <xs:enumeration value="template"/>
 <xs:enumeration value="type"/>
 <xs:enumeration value="global"/>
 </xs:restriction>
 </xs:simpleType>
 </xs:union>
 </xs:simpleType>
 </xs:attribute>
 <xs:attribute name="key" type="xs:token"/>
 <xs:attribute name="ns"/>
 <xs:attribute name="value"/>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>

 <xs:element name="templateRef">
 <xs:complexType>
 <xs:group ref="td:other"/>
 <xs:attribute name="name" type="xs:token"/>
 <xs:attribute name="templateNs"/>
 <xs:attributeGroup ref="td:other"/>
 </xs:complexType>
 </xs:element>

 <xs:attributeGroup name="nsName">
 <xs:attributeGroup ref="td:nameAttr"/>
 <xs:attribute name="ns"/>
 <xs:attribute name="id" type="xs:token"/>
 </xs:attributeGroup>

 <xs:attributeGroup name="templateNsName">
 <xs:attributeGroup ref="td:nameAttr"/>
 <xs:attribute name="templateNs"/>
 <xs:attribute name="id" type="xs:token"/>
 </xs:attributeGroup>

 <xs:attributeGroup name="nameAttr"> <xs:attribute use="required" name="name" type="xs:token"/> </xs:attributeGroup>

FAST Specification 30 (44) 2006-12-20
 * *

 <xs:group name="other">
 <xs:sequence> <xs:group minOccurs="0" ref="td:foreignElm" maxOccurs="unbounded"/> </xs:sequence>
 </xs:group>

 <xs:attributeGroup name="other"> <xs:attributeGroup ref="td:foreignAttr"/> </xs:attributeGroup>

 <xs:group name="foreignElm">
 <xs:choice>
 <xs:any namespace="##other" processContents="skip"/>
 <xs:any namespace="##local" processContents="skip"/>
 </xs:choice>
 </xs:group>

 <xs:attributeGroup name="foreignAttr"> <xs:anyAttribute namespace="##other" processContents="skip"/> </xs:attributeGroup>
</xs:schema>

FAST Specification 31 (44) 2006-12-20
 * *

Appendix 3 Examples (Non-Normative)

Appendix 3.1 Data Type Examples

Appendix 3.1.1 FAST v1.1 Signed Integer Examples

1. Int32 Example – Optional Positive Number

 <int32 id="1" presence="optional" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
942755 0x0e 0x62 0xa3

00001110 01100010 10100011

0
0
x39 0x45 0xa4
0111001 01000101 10100100

 Stop bits indicated in bold
Sign bits indicated by underline
Increment by 1 since field is optional and
value is non-negative

2. Int32 Example – Mandatory Positive Number

 <int32 id="1" presence="mandatory" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
942755 0x0e 0x62 0xa3

00001110 01100010 10100011

0
0
x39 0x45 0xa3
0111001 01000101 10100011

 Stop bits indicated in bold
Sign bits indicated by underline
Do not increment by 1 since field is
mandatory

3. Int32 Example – Optional Negative Number

 <int32 id="1" presence="optional" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
-942755 0xf1 0x9d 0x5d

11110001 10011101 01011101

0x46 0x3a 0xdd
01000110 00111010 11011101

 High-values are dropped on left-
most byte

Stop bits indicated in bold
Sign bits indicated by underline
Do not increment by 1 since value is
negative

4. Int32 Example – Mandatory Negative Number

 <int32 id="1" presence="mandatory" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
-7942755 0xff 0x86 0xcd 0x9d

11111111 10000110 11001101
10011101

0x7c 0x1b 0x1b 0x9d
01111100 00011011 00011011 10011101

FAST Specification 32 (44) 2006-12-20
 * *

 High-values are dropped on left-
most bit

Stop bits indicated in bold
Sign bits indicated by underline
Do not increment by 1 since field is
mandatory

5. Int32 Example – Mandatory Positive Number with sign-bit extension

 <int32 id="1" presence="mandatory" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
8193 0x20 0x01

00100000 00000001
0x00 0x40 0x81
00000000 01000000 10000001

 Stop bits indicated in bold
Sign bits indicated by underline
Sign bit extension necessary to specify sign
(italics)
Do not increment by 1 since field is
mandatory

6. Int32 Example – Mandatory Negative Number with sign-bit extension

 <int32 id="1" presence="mandatory" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
-8193 0xff 0xdf 0xff

11111111 11011111 11111111
0x73 0x3f 0xff
01111111 00111111 11111111

 Stop bits indicated in bold
Sign bits indicated by underline
Sign bit extension necessary to specify sign
(italics)
Do not increment by 1 since field is
mandatory

Appendix 3.1.2 FAST v1.1 Unsigned Integer Examples

1. uInt32 Example – Optional Number

 <uInt32 id="1" presence="optional" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
null n/a 0

10000000
x80

0 0x00
0

0x81
10000001

1 0x01
1

0x82
10000010

942755 0x0e 0x62 0xa3
1110 01100010 10100011

0x39 0x45 0xa4
00111001 01000101 10100100

 Increment by 1 since field is optional
Stop bits indicated in bold

2. uInt32 Example – Mandatory Number

 <uInt32 id="1" presence="mandatory" name="Value"/>

FAST Specification 33 (44) 2006-12-20
 * *

Input Value Native Hex/Binary FAST Hex/Binary
0 0x00

0
0
10000000
x80

1 0x01
1

0
10000001
x81

942755 0x0e 0x62 0xa3
1110 01100010 10100011

0
00111001 01000101 10100011
x39 0x45 0xa3

 Do not increment by 1 since field is
mandatory
Stop bits indicated in bold

Appendix 3.1.3 FAST v1.1 String Examples

1. US ASCII string Example – Optional String

 <string id="1" presence="optional" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
Null n/a 0

10000000
x80

ABC 0x41 0x42 0x43
01000001 01000010 01000011

0
01000001 01000010 11000011
x41 0x42 0xc3

“” – zero
length string

n/a 0
00000000 10000000
x00 0x80

 Stop bits indicated in bold

2. US ASCII string Example – Mandatory String

 <string id="1" presence="mandatory" name="Value"/>

Input Value Native Hex/Binary FAST Hex/Binary
ABC 0x41 0x42 0x43

01000001 01000010 01000011
0x41 0x42 0xc3
01000001 01000010 11000011

“” – zero
length string

n/a 0x80
10000000

 Stop bits indicated in bold

Appendix 3.1.4 FAST v1.1 Byte Vector Examples

1. byteVector Example – Optional byteVector

 <byteVector id="1" presence="optional" name="Value"/>

FAST Hex/Binary Input Value Native Hex/Binary
Length Value

Null n/a 0x80
10000000

n/a

ABC 0x41 0x42 0x43
01000001 01000010 01000011

0x84
10000011

0x41 0x42 0x43
01000001 01000010
01000011

zero length
value

n/a 0x81
10000001

n/a

 Increment zero length by 1 since field is
optional
Stop bits indicated in bold

FAST Specification 34 (44) 2006-12-20
 * *

2. byteVector Example – Mandatory byteVector

 <byteVector id="1" presence="mandatory" name="Value"/>

FAST Hex/Binary Input Value Native Hex/Binary
Length Value

ABC 0x41 0x42 0x43
01000001 01000010 01000011

0
10000011
x83 0x41 0x42 0x43

01000001 01000010
01000011

zero length
value

n/a 0
10000000
x80 n/a

 Stop bits indicated in bold

Appendix 3.1.5 FAST v1.1 Decimal Examples

1. Decimal Example – Mandatory Positive Decimal

 <decimal id="1" presence="mandatory" name="Value"/>

Input Value Decomposed Input Value FAST Hex/Binary
Ascii Exponent Mantissa Exponent Mantissa
94275500 2 942755 0x82

10000010
0x39 0x45 0xa3
00111001 01000101 10100011

 Stop bits indicated in bold
Sign bits indicated by underline

2. Decimal Example – Mandatory Positive Decimal with Scaled Mantissa

 <decimal id="1" presence="mandatory" name="Value"/>

Input Value Decomposed Input Value FAST Hex/Binary
Ascii Exponent Mantissa Exponent Mantissa
94275500 1 9427550 0x81

10000001
0x04 0x3f 0x34 0xde
0000100 00111111 00110100
11011110

 Stop bits indicated in bold
Sign bits indicated by underline
Exponent is set to 1 for scaling mantissa value

3. Decimal Example – Optional Positive Decimal

 <decimal id="1" presence="optional" name="Value"/>

Input Value Decomposed Input Value FAST Hex/Binary
Ascii Exponent Mantissa Exponent Mantissa
94275500 2 942755 0x83

10000011
0x39 0x45 0xa3
00111001 01000101 10100011

 Stop bits indicated in bold
Sign bits indicated by underline
Increment Exponent by 1 since field is optional and

FAST Specification 35 (44) 2006-12-20
 * *

value is non-negative

4. Decimal Example – Mandatory Positive Decimal

 <decimal id="1" presence="mandatory" name="Value"/>

Input Value Decomposed Input Value FAST Hex/Binary
Ascii Exponent Mantissa Exponent Mantissa
9427.55 -2 942755 0

1
xfe
1111110

0
0
x39 0x45 0xa3
0111001 01000101 10100011

 Stop bits indicated in bold

Sign bits indicated by underline

5. Decimal Example – Optional Negative Decimal

 <decimal id="1" presence="optional" name="Value"/>

Input Value Decomposed Input Value FAST Hex/Binary
Ascii Exponent Mantissa Exponent Mantissa
-9427.55 -2 -942755 0

1
xfe
1111110

0
01
x46 0x3a 0xdd
000110 00111010 11011101

 Stop bits indicated in bold

Sign bits indicated by underline

6. Decimal Example – Optional Positive Decimal with single field operator

 <decimal id="1" presence="optional" name="Value"> <copy/> </decimal>

Input Value Decomposed Input Value FAST Hex/Binary
Ascii Exponent Mantissa Exponent Mantissa
9427.55 -2 942755 0xfe

11111110
0x39 0x45 0xa3
00111001 01000101 10100011

 Stop bits indicated in bold
Sign bits indicated by underline
Single Pmap slot is used since field is optional
and operator is specified at field level

7. Decimal Example – Optional Positive Decimal with individual field operators

 <decimal id="1" presence="optional" name="Value">
 <exponent> <copy/> </exponent>
 <mantissa> <delta/> </mantissa>
 </decimal>

Input Value Decomposed Input Value FAST Hex/Binary
Ascii Exponent Mantissa Exponent Mantissa
9427.55 -2 942755 0xfe

11111110
0x39 0x45 0xa3
00111001 01000101 10100011

 Stop bits indicated in bold
Sign bits indicated by underline
Exponent uses a Pmap
Mantissa does not use a Pmap slot

FAST Specification 36 (44) 2006-12-20
 * *

8. Decimal Example – Optional Negative Decimal with sign bit extension

 <decimal id="1" presence="optional" name="Value"/>

Input Value Decomposed Input Value FAST Hex/Binary
Ascii Exponent Mantissa Exponent Mantissa
-8.193 -3 -8193 0xfd

11111101
0x73 0x3f 0xff
01111111 00111111 11111111

 Stop bits indicated in bold
Sign bits indicated by underline
Sign bit extension necessary to specify sign
(italics)

Appendix 3.2 Field Operator Examples

Appendix 3.2.1 FAST v1.1 Constant Operator Examples

1. Constant Operator Example – Mandatory Unsigned Integer

 <uInt32 id="1" presence="mandatory" name="Flag"> <constant value="0"/> </uInt32>

Input Value Prior Value Encoded
Value

Pmap Bit FAST Hex/Binary

0 N/A None Not Required None
99 N/A Error Error Error
None N/A Error Error Error

2. Constant Operator Example – Optional Unsigned Integer

 <uInt32 id="1" presence="optional" name="Flag"> <constant value="0"/> </uInt32>

Input Value Prior Value Encoded
Value

Pmap Bit FAST Hex/Binary

0 N/A None 1* None
None N/A None 0* None

* An optional field with the constant operator will occupy a single bit. The bit will be set on if the input
value is equal to the initial value specified in the instruction context. The bit will be set off if the input
value is absent.

Appendix 3.2.2 FAST v1.1 Default Operator Examples

1. Default Operator Example – Mandatory Unsigned Integer
 <uInt32 id="1" presence="mandatory" name="Flag"> <default value="0"/> </uInt32>

Input Value Prior Value Encoded
Value

Pmap Bit FAST Hex/Binary

0 N/A None 0 None
1 N/A 1 1 0x81

10000001

2. Default Operator Example for NULL– Optional Unsigned Integer

FAST Specification 37 (44) 2006-12-20
 * *

 <uInt32 id="1" presence="optional" name="Flag"> <default/> </uInt32>

Input Value Prior Value Encoded
Value

Pmap Bit FAST Hex/Binary

None N/A None 0 None

Appendix 3.2.3 FAST v1.1 Copy Operator Examples

1. Copy Operator Example – Mandatory String

 <string id="1" presence="mandatory" name="Flag"> <copy/> </string>

Input Value Prior Value Encoded
Value

Pmap Bit FAST Hex/Binary

CME None CME 1 0
01000011 01001101 11000101
x43 0x4d 0xc5

CME CME None 0 None

ISE CME ISE 1 0
01001001 01010011 11000101
x49 0x53 0xc5

2. Copy Operator Example for NULL – Optional String

 <string id="1" presence="optional" name="Flag"> <copy/> </string>

Input Value Prior Value Encoded
Value

Pmap Bit FAST Hex/Binary

None None Null 1 0
10000000
x80

None Null None 0 None
CME Null CME 1 0x43 0x4d 0xc5

01000011 01001101 11000101

Appendix 3.2.4 FAST v1.1 Increment Operator Examples

1. Increment Operator Example – Mandatory Unsigned Integer

 <uInt32 id="1" presence="mandatory" name="Flag"> <increment value="1"/> </uInt32>

Input Value Prior Value Encoded
Value

Pmap Bit FAST Hex/Binary

1 1 None 0 None

2 1 None 0 None

4 2 4 1 0
10000100
x84

5 4 None

Appendix 3.2.5 FAST v1.1 Delta Operator Examples

1. Delta Operator Example – Mandatory Signed Integer

 <int32 id="1" presence="mandatory" name="Price"> <delta/> </int32>

FAST Specification 38 (44) 2006-12-20
 * *

Input Value Prior Value Encoded
Value

Pmap Bit FAST Hex/Binary

942755 0

942755 N/A 0x39 0x45 0xa3
00111001 01000101 10100011

942750 942755 -5 N/A 0xfb
11111011

942745 942750 -5 N/A 0xfb
11111011

942745 942745 0 N/A 0
10000000
x80

The initial prior value in example 1 above is 0 (zero). The default value can be specified in the template.

2. Delta Operator Example – Mandatory Decimal

 <decimal id="1" presence="mandatory" name="Price"> <delta/> </decimal>

Prior Value

Encoded Value FAST Hex/Binary Input
Value

Exp Mant Exp Mant

Pmap
Bit

Exponent Mantissa
9427.55 0

0

-2 942755 N/A 0xfe
11111110

0x39 0x45 0xa3
00111001 01000101
10100011

9427.51 -2 942755 0 -4 N/A 0x80
10000000

0xfc
11111100

9427.46 -2 942751 0 -5 N/A 0x80
10000000

0xfb
11111011

3. Delta Operator Example – Mandatory Decimal with Initial Value

 <decimal id="1" presence="mandatory" name="Price"> <delta value="12000"/> </decimal>

Prior Value
(mantissa)

Encoded Value FAST Hex/Binary Initial/
Input
Value Exp Mant Exp Mant

Pmap
Bit

Exp Mantissa
12000 0

0

N/A N/A

N/A N/A N/A

12100 3 12 -2 1198 N/A 0xfe
11111110

0x09 0xae
00001001 10101110

12150 1 1210 0 5 N/A 0x80
10000000

0
10000101
x85

12200 1 1215 0 5 N/A 0x80
10000000

0
10000101
x85

4. Delta Operator Example – Mandatory String

 <string id="1" presence="mandatory" name="Security"> <delta/> </string>

FAST Hex/Binary Input Value Prior
Value

Encoded
Value

Subtraction
Length

Pmap
Bit

Length Encoded String
GEH6 Empty GEH6 0 N/A 0x80 0x47 0x45 0x48 0xb6

FAST Specification 39 (44) 2006-12-20
 * *

string

10000000

01000111 01000101 01001000
10110110

GEM6 GEH6 M6 2 N/A 0
10000010
x82

0x4d 0xb6
01001101 10110110

ESM6 GEM6 ES -2 N/A 0xfd
11111101

0x45 0xd3
01000101 11010011

RSESM6 ESM6 RS -0 N/A 0xff
11111111

0x52 0xd3
01010010 11010011

A negative subtraction length is used to remove values from the front of the string. Negative zero is used
to append values to the front of the string

The initial prior value is the empty string if no default string has been specified in the template.

Appendix 3.2.6 FAST v1.1 Extended Example

3. Multiple Pmap Slot Example – Optional Positive Decimal with individual field operators

 <decimal id="1" presence="optional" name="Value">
 <exponent> <copy/> </exponent>
 <mantissa> <copy/> </mantissa>
 </decimal>

Input
Value

Decomposed Input Value Pmap
Bits

FAST Hex/Binary

Exponent Mantissa
Ascii Value Encoded Value Encoded

 Exponent Mantissa

9427.55 -2 (no
previous)

-2 942755
(no
previous)

942755 11 0xfe
11111110

0x39 0x45 0xa4
00111001 01000101
10100100

9427.60 -2 None 942760 942760 01 None 0x39 0x45 0xa8
00111001 01000101
10101000

None NULL NULL None None 1 0x80
10000000

None

 Stop bits indicated in bold
Sign bits indicated by underline
Exponent and Mantissa each use 1 Pmap slot
due to use of separate field operators

Appendix 3.3 Presence Map

Appendix 3.3.1 FAST v1.1 Presence Map Examples
The following table summarizes the presence bit utilization rules for the different field operators.

 Presence Map Bit is Required

Operator Mandatory Optional

None No No

<constant/> No Yes*

<copy/> Yes Yes

<default/> Yes Yes

<delta/> No No

<increment/> Yes Yes

FAST Specification 40 (44) 2006-12-20
 * *

<tail/> Yes Yes

* An optional field with the constant operator will occupy a single bit. The bit will be set on if the input
value is equal to the initial value specified in the instruction context. The bit will be set off if the input
value is absent.

FAST Specification 41 (44) 2006-12-20
 * *

Appendix 4 Summary of Error Codes

Static Errors

ERR S1

It is a static error if templates encoded in the concrete XML syntax are in fact not well-formed, do
not follow the rules of XML namespaces or are invalid with respect to the schema in Appendix 1.

ERR S2

It is a static error if an operator is specified for a field of a type to which the operator is not
applicable.

ERR S3

It is a static error if an initial value specified by the value attribute in the concrete syntax cannot be
converted to a value of the type of the field.

ERR S4

It is a static error if no initial value is specified for a constant operator.

ERR S5

It is a static error if no initial value is specified for a default operator on a mandatory field.

Dynamic Errors

ERR D1

It is a dynamic error if type of a field in a template cannot be converted to or from the type of the
corresponding application field.

ERR D2

It is a dynamic error if an integer in the stream does not fall within the bounds of the specific
integer type specified on the corresponding field.

ERR D3

It is a dynamic error if a decimal value cannot be encoded due to limitations introduced by using
individual operators on exponent and mantissa.

ERR D4

It is a dynamic error if the type of the previous value is not the same as the type of the field of the
current operator.

ERR D5

It is a dynamic error if a mandatory field is not present in the stream, has an undefined previous
value and there is no initial value in the instruction context.

ERR D6

It is a dynamic error if a mandatory field is not present in the stream and has an empty previous
value.

ERR D7

It is a dynamic error if the subtraction length exceeds the length of the base value or if it does not
fall in the value rang of an int32.

ERR D8

It is a dynamic error if the name specified on a static template reference does not point to a
template known by the encoder or decoder.

FAST Specification 42 (44) 2006-12-20
 * *

ERR D9

It is a dynamic error if a decoder cannot find a template associated with a template identifier
appearing in the stream.

ERR D10

It is a dynamic error to convert byte vectors to and from other types than strings.

ERR D11

It is a dynamic error if the syntax of a string does not follow the rules for the type converted to.

ERR D12

It is a dynamic error if a block length preamble is zero.

Dynamic Errors

ERR R1

It is a reportable error if a decimal cannot be represented by an exponent in the range [-63 … 63]
or if the mantissa does not fit in an int64.

ERR R2

It is a reportable error if the combined value after applying a tail or delta operator to a Unicode
string is not a valid UTF-8 sequence.

ERR R3

It is a reportable error if a Unicode string that is being converted to an ASCII string contains
characters that are outside the ASCII character set.

ERR R4

It is a reportable error if a value of an integer type cannot be represented in the target integer type
in a conversion.

ERR R5

It is a reportable error if a decimal being converted to an integer has a negative exponent or if the
resulting integer does not fit the target integer type.

ERR R6

It is a reportable error if an integer appears in an overlong encoding.

ERR R7

It is a reportable error if a presence map is overlong.

ERR R8

It is a reportable error if a presence map contains more bits than required.

ERR R9

It is a reportable error if a string appears in an overlong encoding.

FAST Specification 43 (44) 2006-12-20
 * *

References

SCP

Rolf Andersson. FAST Session Control Protocol Specification. FPL, 2005.

RNC

James Clark, editor. RELAX NG Compact Syntax. OASIS, 2002.

XSD

Henry S. Thompson, David Beech, Murray Maloney, Noah Mendelsohn, editors. XML
Schema Part 1. W3C (World Wide Web Consortium), 2001.

XML

Tim Bray, Jean Paoli, C. M. Sperberg-McQueen, Eve Maler, François Yergeau, editors.
Extensible Markup Language. W3C (World Wide Web Consortium), 2004.

XMLNS

Tim Bray, Dave Hollander, Andrew Layman, editors. Namespaces in XML. W3C (World
Wide Web Consortium), 1999.

UNICODE

The Unicode Standard, Version 3.2. The Unicode Consortium, 2000.

TWOC

A description of two’s complement at Wikipedia:
http://en.wikipedia.org/wiki/Two's_complement

FAST Specification 44 (44) 2006-12-20
 * *

http://www.oasis-open.org/committees/relax-ng/compact-20021121.html
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/
http://www.w3.org/TR/2004/REC-xml-20040204/
http://www.w3.org/TR/1999/REC-xml-names-19990114/
http://en.wikipedia.org/wiki/Two's_complement

	1 Introduction
	2 Terminology
	3 Notation
	3.1 XML Namespace
	4 Error Handling
	5 Application Types
	6 Templates
	6.1 Instruction Context
	6.2 Field Instructions
	6.2.1 Integer Field Instructions
	6.2.2 Decimal Field Instructions
	6.2.3 String Field Instruction
	6.2.4 Byte Vector Field Instruction
	6.2.5 Sequence Field Instruction
	6.2.6 Group Field Instruction

	6.3 Field Operators
	6.3.1 Dictionaries and Previous Values
	6.3.2 Initial Values
	6.3.3 Constant Operator
	6.3.4 Default Operator
	6.3.5 Copy Operator
	6.3.6 Increment Operator
	6.3.7 Delta Operator
	6.3.7.1 Delta for Integers
	6.3.7.2 Delta for Decimal
	6.3.7.3 Delta for ASCII Strings
	6.3.7.4 Delta for Unicode Strings
	6.3.7.5 Delta for Byte Vectors

	6.3.8 Tail Operator
	6.3.8.1 Tail for ASCII Strings
	6.3.8.2 Tail for Unicode Strings
	6.3.8.3 Tail for Byte Vectors

	6.4 Template Reference Instruction

	7 Names
	7.1 Auxiliary Identifiers

	8 Type Conversion
	8.1 Converting from String
	8.1.1 Converting to Integers
	8.1.2 Converting to Decimal
	8.1.3 Converting to Byte Vector
	8.1.4 Converting Between Character Sets

	8.2 Converting from Integers
	8.2.1 Converting to Integers
	8.2.2 Converting to Decimal
	8.2.3 Converting to String

	8.3 Converting from Decimal
	8.3.1 Converting to Integers
	8.3.2 Converting to String

	8.4 Converting from Byte Vector to String

	9 Extensibility
	10 Transfer Encoding
	10.1 Byte and Bit Ordering
	10.2 Stop Bit Encoded Entities
	10.3 Template Identifier
	10.4 Nullability
	10.5 Presence Map
	10.5.1 Presence Map and NULL Utilization

	10.6 Fields
	10.6.1 Integer Numbers
	10.6.1.1 Signed Integer
	10.6.1.2 Unsigned Integer

	10.6.2 Scaled Number
	10.6.3 ASCII String
	10.6.4 Unicode String
	10.6.5 Byte Vector

	10.7 Delta
	10.7.1 Integer Delta
	10.7.2 Scaled Number Delta
	10.7.3 ASCII String Delta
	10.7.4 Byte Vector Delta
	1. Int32 Example – Optional Positive Number
	2. Int32 Example – Mandatory Positive Number
	3. Int32 Example – Optional Negative Number
	4. Int32 Example – Mandatory Negative Number
	5. Int32 Example – Mandatory Positive Number with sign-bit extension
	6. Int32 Example – Mandatory Negative Number with sign-bit extension
	1. uInt32 Example – Optional Number
	2. uInt32 Example – Mandatory Number
	1. US ASCII string Example – Optional String
	2. US ASCII string Example – Mandatory String
	1. byteVector Example – Optional byteVector
	
	2. byteVector Example – Mandatory byteVector
	1. Decimal Example – Mandatory Positive Decimal
	2. Decimal Example – Mandatory Positive Decimal with Scaled Mantissa
	3. Decimal Example – Optional Positive Decimal
	4. Decimal Example – Mandatory Positive Decimal
	5. Decimal Example – Optional Negative Decimal
	6. Decimal Example – Optional Positive Decimal with single field operator
	7. Decimal Example – Optional Positive Decimal with individual field operators
	8. Decimal Example – Optional Negative Decimal with sign bit extension
	1. Constant Operator Example – Mandatory Unsigned Integer
	2. Constant Operator Example – Optional Unsigned Integer
	1. Default Operator Example – Mandatory Unsigned Integer
	2. Default Operator Example for NULL– Optional Unsigned Integer
	1. Copy Operator Example – Mandatory String
	2. Copy Operator Example for NULL – Optional String
	1. Increment Operator Example – Mandatory Unsigned Integer
	1. Delta Operator Example – Mandatory Signed Integer
	2. Delta Operator Example – Mandatory Decimal
	3. Delta Operator Example – Mandatory Decimal with Initial Value
	4. Delta Operator Example – Mandatory String
	3. Multiple Pmap Slot Example – Optional Positive Decimal with individual field operators
	Static Errors
	Dynamic Errors
	Dynamic Errors

