MOSCOwW
EXCHANGE

Client program interface

Moscow 2024

Client program interface 07.10.2024

Table of Contents

R O 11 o G 7 o 4
1.1. Installation and PrepParation t0 USEieieeeee ettt et ettt et e e e et ettt ettt et e e e e e e e 4
1.1.1. Installation and preparation t0 USE fOr LINUX OSttt ittt e e e e e e e e e e e e e e aaeee s 5
1.1.1.1. Installation from ZIP @rChiVEoiii i e e et e e 5

1.1.1.2. Installation from a deb package or rpm Packageooiiiiiiiiii i e 6

2 /- 11 o T o] (=Y o £t 7
1.3. How to work with Cgate 0bjJeCtS. GENEIal OVEIVIEWiiit ettt et et et e e et et e eenaeens 8
B VYo T4 (Yo R g T o) T T Tox 1T) o 8
ST =T ot = V7T o 0 B Ur= S = L 10
1.6. WOrKING WIith 0a@ SCNEMIES ...ttt ettt ettt et e e e e et e e et et ettt e e e et e e et e e aee e enanes 13
1.6.1. Data SChemME USAQE POICYuiiiiitt ettt ettt et ettt et et et et e e e e e e e e e e e e 19

1.7. Sending transactions and rECEIVING FEPIIES uueitt ettt ettt ettt et e e et e et et e e e e e e e e e 21
1.8, HOW 10 WOTK With P2y S ..ttt ittt ittt ettt ettt et e et ettt e ettt et et ettt e et e e et e et et e v e e anaee e 23
1.9. Password Change ProtoCOl OB B80Sttt et ettt e ettt et e e e 23
1.9, 1. PUBISNEr P2mMOPWa ..ttt ettt e e e e 23

N T 1 (=T =T Gl o120 T | o 1T 24

22 Y o o 1= T 11T) o P 25
A € 1= g 1Y LI Vo (= T= 331 £ 25
2 | (= 0y V{3 1= 0] (=2 25
2.3. Usage in the multithreading enVirOnmMIENT ... ittt et ettt et et e et e e e e et e e e e enaeens 26
2.4, Start-up and shutdown Of the ENVITONMENT e e e et e e et e et e et e e e e anaeeens 26
55t I o Y2 T Yo Y=Y 1T o T 27

72 ST O o 3 TTod o o N 28
S T A oo o o 1 T = 28

A 2 oo I o o1 o) o= o TP 29

2285 T0C TR oo o7) 1o T o [0 1= 30

2830 S oo oo) o T T o (=Y 10 30

AT TR oo o 1 T o (0o == 31

A G oo o T i TR0 =2 £ 7= =P 32

22 T I £ = 3T 32
225 350 O oo £ o T £ -1 32

225 3072 oo £ 4T o o1 o 35

2 S T T oo £ 4T o[1Y 36

2 S 30 S oo £ 4T o =T 1 (0P 37

b2 S TR T oo £ 4T o =] €] 1= L 37

b S 3 T oo T £ 4T o =] £ 1= 02T 38

2.7 PUBI ST e 38
28 5 R oo 10T £ -1 38

2 2 o I 18| o TN o o T o 39

2 0 TR oo 10| o T o[== 40

2 A S o 18| o TR0 L= {0 40

2 R ST vt I 18| o TR0 =] (] 1= L= 41

2 A T oo 8| o TR0 =1 €Yo 1= 03T 41

2 8 A o 18| o T £ TS0 1= 42

2 8 < TR oo 10| o T o 0T A 43

2 A8 TR oo 10| o T £ 11T o Y 44

22 S TR o T T [o 44
228 S 250 I oo [o >V - 44

2R S 302 o [Yo T [o 1 o 44

22 S 0 T oo [Yo 101 T 45

228 S TR S oo [Yo N =Y o 1 45

b2 S TR T oo [o - T =) 1 P 45

b2 S 38 T oo [Yo o 1= o o) o 46

228 S 8 A o [Yo 1011 o 46

b2 S 38 T oo [Yo T =Y o £ 1 46

2.9. ODbjJECtS Of the P2SYS PrOTOCOI ...ttt ettt et ettt et et e ettt et et et et e e e e e et et e 47
2 TR O £ oo o =Y o 47

B B A £ 1) 1= 3T 47

2.0.3. P2SYS PUBI ST .. e 47

2 T)1 = U V2 {1 1o T 48
2285 10 20 TR o T o o o - 48

20 0 o o o = 1 1 P 48
22 10 20 T oo T 4 2 1= o [o 49

R T [0 30 1= =Yo7] o] o o P 51
0 B o 1= 40T (o T | U 111 /P 51
3.1.1. MAKESIC - SIIUCTUIES GENEIALION ...\ttt ettt ettt ettt e et e et e e e et et et et e et e e e e e e e e e annaeees 51

07 111 Y] =Yg To Lo o F= T) (o 52
4, AP deSCription fOr JaVa, INE T ..ottt ettt et e ettt ettt et e e e e et et e e e e 54
T =Y 11T) o P 54

Client program interface 07.10.2024

4.2.

4.3.

4.4.

4.5.

4.6.

4110 APL CGAE fOr JAVA .ttt ittt e e e e e 54
A.1.2. APL CGate fOr INE T o 54
[) [=cx S o = = 55
o] T=Tox 1T o o] o T<T o A 55
4.3.1. CONNECHON CONSIIUCION ...\ttt ettt ettt et et et et et et et ettt et et et et et et e e 55
4.3.2. 'ConNection.diSPOSE" METNOT ettt ettt e e ettt e 55
4.3.3. 'ConNNeCtion.OpeNn’ MEtNOM o e e ettt et et 55
4.3.4. ConNectioN.CloSE MENOTttt et 56
4.3.5. CoNNECLION.ProCESS METNOMottt e e ettt e ettt et e et e et e e e e e anaes 56
LG N ST @fe g g T=Ted o g S) = L (= o] (] 0 1= 1 Y/ P 56
LTS3 =] =T o o] =Y ot 56
R) (=T =T oo 1 S (U Tod (o] PP 57
4.4.2. 'Listener.diSPOSe’ MEthOT ... ettt 57
e T) (=Y g T=T o o= o B o 0 =1 1 o o 58
4.4.4. 'Listener.Close’ MEthO ... et 58
L Y W (=Y g [T RS = L L= 0 (0] =1 1 Y 58
L ST I (=T g 1=t ST g T=Ta g TR o] o] o< o 58
Ly I =Y o[- T o F= T To | [T a0 o= Y 59
L] 1153 1=) o] [= o1 59
4.5.1. PUBIISNEI CONSIIUCTON ...ttt ettt et ettt et et et ettt et et ettt eaaes 59
4.5.2. 'PUDlISher.diSposSe’ MEtNOG e e e ettt e et e e et 60
4.5.3. PUDlISher.open MethOd ... e e ettt ettt e e e 60
4.5.4. PUbBIISher.Close MethOd ... e e 60
ST S0 o) [g e A3 = L (= o] o] o 1= £ PP 60
4.5.6. PUDIISNEI. SCNEIME PrOP Ity ..t ettt et e ettt et e 61
4.5.7. Publisher.newMessage MeEthOOooiiiiiiii ettt e e et e e e e aaaes 61
4.5.8. PUDIISher.poSt MEethOO et e ettt ettt ettt e 61
T2 ST= o <o o] =T ot 62
L I Y (TS To = o 17 o To = 62
4.6.2. MESSAGE. TY P PrO P Y ettt ettt ettt ettt et ettt et et et ettt ettt e 62
4.6.3. MESSAGE. DAtA PrOPEITY ..ttt ettt e e 62
4.6.4. Message.toStriNg MethOd ... e et et 62
L SRR T [T T= T T 3 o= 63
4.6.5.1. OpenMESSAgE ODJECT i e 63

4.6.5.2. ClOSEMESSA0E ODJECT ...ttt e e e 63

4.6.5.3. DataMESSAGE ODJOCE ...ttt ettt 63

4.6.5.4. StreambDataMeESSA0E ODJECLttt e e e 63

4.6.5.5. TNBEQINMESSAGE ODJECT ettt 64

4.6.5.6. TNCOMMItMESSAGE ODJECT ... e ettt e e e e e e e e aaaes 64

4.6.5.7. P2MQTIMEOULMESSAGE ODJECLttt ettt et ettt et e e e e e e e e e aaaees 64

4.6.5.8. P2RepILIfENUMMESSAQE ODJECLttt et ettt e e e e e e aeeeas 64

4.6.5.9. P2ReplClearDeletedMessage ODJECToiiiiiii i e 64
4.6.5.10. P2ReplONlNEMESSAQGE ODJECE ...\ ..ttt et e ettt 64
4.6.5.11. P2ReplIStateMessage ODJECTt e 64

Client program interface 07.10.2024

1. Quick start

1.1. Installation and preparation to use

The P2 CGate library consists of the following components:

Plaza-2 system libraries
P2MQRouter message router
cgate gate library

cgate.h — a header file with API description

All these components are required for development using the P2 CGate library.

To begin development, it is necessary to install the components by the installer corresponding to your operation system. Depending on the
operation system, the libraries and the header file will be installed either into default locations or into locations specified during installation
process. In further instructions the installation folder will be specified as ‘CGATE_HOME'.

Important

Login to the Plaza-2 system and the application key are required for work with the library. Logins to the test system Plaza-2
and test keys are used for development — they may be used freely by any developer. Production logins and keys are used for
production environment. Production keys may be obtained upon passing the certification procedure.

Building and running examples may be performed to verify whether installation has finished correctly and the system is ready for develop-
ment. To do this, it is necessary to perform the following steps:

1.

Configuration of the Plaza-2 router according to the available login (this activity is performed automatically if an interactive installer was
used)

Open router setting file P2MQRouter, which is usually called client_router.ini and type in login and password in the section [AS:NS]:
[AS:NS]

USERNAME=<your login>
PASSWORD=<your password>

. Building examples

Examples are located in the CGATE_HOME\sdk\samples folder for Windows platform and in the /usr/share/doc/cgate-examples (/opt/
moex/cgate/samples) folder for Linux. Examples can be built with build scripts which vary depending on the used platform and program-
ming language. For Linux OS, it is recommended to prepare a copy of examples in the home folder and to build them from this folder.

. Running examples

To run examples it is necessary to make sure that the P2MQRouter router is active and connected to the Plaza-2 network (by analysis
of router messages). Also please make sure that the Plaza-2 libraries are accessible (it may be required to add the CGATE_HOME \bin
directory to the PATH environment variable or to specify the CGATE_HOME\bin directory in your development environment), and also
that configuration files are available.

. Description of examples

a. aggrspy

aggrspy is an example used for creating aggregated orderbook (sell and buy) for fixed instrument using the 'FORTS_AGGR50_REPL'
stream. By pressing 'Enter’, snapshot of the orderbook will be saved into ‘outfile’ file.

Command line to run the example:

aggrspy ISIN_ID depth outfile [r]

Input arguments:

* isin_id - instrument ID;

 depth - orderbook depth to be saved into ‘outfile' file (no more than 50);

« outfile - a file to save orderbook snapshot;

* r - change sorting direction to opposite (the parameter is used for instruments with backward sorting order).

b. repl

Client program interface 07.10.2024

allows to receive data replica for a stream and saves all incoming messages into log file. When disconnected, the replica starts over.
The example does not have input parameters.

c. repl_resume

repl_resume is an example similar to the 'repl' one. The difference is that when disconnected, the replica starts from the last
"TN_COMMIT' message. The example does not have input parameters.

d. send
send adds order to SPECTRA. Saves reply from the trading system into log file. The example does not have input parameters.
e. orderbook

orderbook is an example used for creating aggregated orderbook (sell and buy) for fixed instrument using the
'FORTS_ORDLOG_REPL' online stream and the 'FORTS_USERORDERBOOK_REPL' snapshot stream. By pressing 'Enter’, snap-
shot of the orderbook will be saved into 'outfile’ file.

Command line to run the example:

orderbook ISIN_ID depth outfile [r]

Input arguments:

* isin_id - instrument ID;

 depth - orderbook depth to be saved into ‘outfile’ file (no more than 50);

« outfile - a file to save orderbook snapshot;

* r - change sorting direction to opposite (the parameter is used for instruments with backward sorting order).
f. p2sys

p2sys is used for authorise router via cgate. Runs the following commands in loop:

i. Sends erroneous command set (‘login’, 'pwd'), receives the 'logon failed' message in reply;

ii. Sends the correct command set ('login’, ‘pwd");

ii. Sends the 'logout' request in reply on successful authorisation message;

iv. Returns to 1.
g. send_mt

send_mt - a multistream example of sending order. (Attention! This example can be compiled only by compilers supporting C++11.)

Stream 1 contains orders. Stream 2 contains replies for the orders sent.
1.1.1. Installation and preparation to use for Linux OS

1.1.1.1. Installation from zip archive

Cgate distributive kit contains an installation script and an archive file which contains loadable modules of projects 'cgate’, 'cgate_java',
'include’ files, documentation files and example files. The distribution kit can be downloaded at https://ftp.moex.com/pub/ClientsAPI/Spec-
tra/CGate/.

Installation steps:

1. To install the appropriate references, run
chmod 755 ./install.sh

2. Run

./install.sh ./cgate_linux_amd64-7.12.0.103.zip

Note

Please note that the archive file name depends on the software version, and may differ from the one shown above!
3. After receiving 'Please, enter cgate install path:' specify complete path to the folder where you want cgate to be unzipped.
4. After receiving 'Please, enter P2 login:' specify user's login name;

5. After receiving: 'Please, enter P2 password:' specify user's password.

https://ftp.moex.com/pub/ClientsAPI/Spectra/CGate/
https://ftp.moex.com/pub/ClientsAPI/Spectra/CGate/

Client program interface 07.10.2024

Note

Attention! The steps below differ depending on the Linux OS version currently installed on your computer!
Debian 6:
1. Install 'liblzo2-2' package (router startup)
2. Install ‘ant’ package
3. Install 'openjdk-6-jdk' package (java examples compiler)
4. Install 'g++' package (C++ examples compiler).
CentOS 6:
1. Install ‘lzo' (router startup)
2. Install 'gcc’ package
3. Install 'gcc-c++' package (C++ examples compiler)
4. Install 'ant' package (java examples compiler)
To compile a java example run
make_java_samples.sh
To run a java example please do the following steps:
1. Start the router by running
router.sh
2. Open the 'examples/java’ file folder
3. Run the 'runjava.sh' script with the necessary parameters added.
1.1.1.2. Installation from a deb package or rpm package
Installation steps:
1. Download and install the gateway package by running:
dpkg -i cgate_<version>_amd64.deb
in case of installation from a deb package, or by running:
rpm -U cgate-<version>.x86_64.rpm
in case of installation from an rpm package.
‘<version>' - distribution version number

Installation location:

Installation location Description
/opt/moex/cgate Binaries, schematics, gateway documentation
/etc/opt/moex/cgate Configuration files, auth.ini - files
Ivar/opt/moex/cgate Logging directory, trace files
Jusr/share/doc Copyright, installation documentation

2. Open the 'fetc/opt/moex/cgate/auth’ directory and specify the login/password for connection in the corresponding ini file:
* prod.ini - to connect to the production system
« tl.ini - to connect to the public test system T1
« t0.ini - to connect to the public test system TO

¢ game.ini - to connect to the gaming system

Note

Please note that if the package is upgraded, the \auth' directory and files with connection settings are not deleted, so you do
not need to reconfigure the login/password.

Client program interface 07.10.2024

3. Start the service (router) with the command:
systemctl start cgate@<profile>
'<profile>' - connection option. Available options:
» prod - connection to production system
* rezerv - connection to reserve system
 t1 - connection to public test system T1
* t0 - connection to public test system TO
* game - connection to gaming system

« rfs.prod - connecting to a production system with additional access to RFS

rfs.rezerv - connecting to a reserve system with additional access to RFS
* rfs.t1 - connection to public test system T1 with additional access to RFS

« rfs.t0 - connection to public test system TO with additional access to RFS

Note

Please note that when you upgrade a package, the running service stops, so after the upgrade, the service must be restarted.
The C++ examples code is located in the 'Jopt/moex/cgate/samples/c’ directory. To compile a C++ example run:
/opt/moex/cgate/samples/c/build_c_samples.sh
The compilation results will be in the current directory.
The Java examples code is located in the ‘/opt/moex/cgate/samples/java/basic’ directory. To compile a Java example run:
/opt/moex/cgate/samples/java/basic/build_samples.sh
The compilation results will be in the current directory.
To run the example, you need to call the command from the assembly directory:
/opt/moex/cgate/samples/java/basic/run.sh <sample> <args>
For example:
/opt/moex/cgate/samples/java/basic/run.sh run.repl -Dindex=0
Possible 'run.sh' parameters:

run.orderBook -DisinId= -Ddepth= -DfileName=
run.repl -Dindex=

run.p2sys -Dlogin= -Dpwd=

run.send

run.send_mt

1.2. Main objects

The library introduces a set of objects which are used to get access to different functions of the system. The main objects are:

Environment Describes working environment of the library. This object exists in the single copy. It is intended for initialization and
deinitialization of sub-systems, maintenance of operating logs and memory control.

Connection Provides access to the connection with Plaza-2 router

Message Describes a message. Messages are used for representing any information which is sent and received by the user —
data updating notifications, orders sent to the trading system, reports on orders execution, notifications on opening and
closure of data streams.

Listener Provides access to receiving of messages. This interface is used for receiving of all messages — updates of data streams,
reports on orders execution — if you receive any message, you do it by means of the Listener object.

Publisher Provides access to messages sending. Everything which is sent by your code is sent by means of one of the Publisher
objects.

The Listener and Publisher objects are tied to particular connections. You may use numerous connections, numerous listeners and pub-
lishers depending on the architecture of your application; usually, connections for receiving updates of market information are separated
from connections for sending orders.

Client program interface 07.10.2024

1.3.

1.4.

The general scheme of the library objects within the client program is the following:

Environment

r, __________________________ _“1 [f __________________________ _"1

I I I

|

: connection [: connection |

I [|

I [I

| e e, L

it T T Vo

: : listener |:| publisher || | : : listener |l publisher | I
| 1 |

I [|

o | b ! L

: | message :| message : : : | message :. message ” : :

| I | |
A S = J : . .= J :
M e e e e e e O r

General environment may include several connections; each connection contains arbitrary number of listeners and publishers and each of
them has a certain number of messages. In actual practice, the purpose of each connection and listeners and publishers linked with this
connection usually depends on actual demands of the application.

How to work with Cgate objects. General overview

Each Cgate object (connection, listener and publisher) has a special parameter in its URL settings, which is responsible for naming object
within the system. The object name must be unique, otherwise the system will return the 'CG_ERR_INVALIDARGUMENT' error message.
The 'name’ parameter is not mandatory; by default, Cgate names object as 'noname_%d', where %d is a number. It is recommended to
users to name the objects in order to ease reading Cgate logs.

In Cgate, users are responsible for lifetimes of all objects. The '_new' methods allow to create an object, while the '_destroy' methods allow
to destroy them. In order to prevent memory and system recourses leaks, it is recommended to use a conjugate destroying method.

In Cgate, the following functions cannot be called from ‘callback Isn':

¢ cg_lsn_destroy

¢ cg_conn_destroy

* cg_pub_destroy

« cg_pub_close

* cg_env_open

* cg_env_close

The 'Isn_close' and 'conn_close' functions can be called from ‘callback Isn' after receiving message 'CG_MSG_OPEN'.

If there is the 'mq reply' publisher is used, then it should be opened first. Otherwise, we may receive the 'mq' message trying opening a
listener without any opened publisher.

An object behavior may differ on connection loss to a superior router according to different versions of Cgate. Thus, in earlier versions of
Cgate (versions before 1.3.10) , in case of loss of connection to a superior router, the connection changed its state to 'opening’, and all the
linked objects closed. The connection invalidity notification appeared in a specified timeout interval (3 minutes for replication services).

In Cgate v. 1.3.10 objects behaviours differ. There is a special feature implemented into Plaza 2 v. 202, when services (P2Proxy or other)
notify the Cgate objects on their closing. The object linked to the connection closes immediately, while the object 'listener' closes in 3
replication timeout intervals (now 30 seconds). All other objects remain open and continue working.

Working with connection

The ‘Connection’ object provides interaction with the Plaza-2 router for sending and receiving messages. These objects may be created
in any quantity at any time during program operation with initialized environment; nevertheless, it is recommended to make connections at
the start of program and to destroy them just before exiting.

Connection is created by calling ‘cg_conn_new’, for instance, in the following way:

cg_conn_t* conn;
result = cg_conn_new("p2tcp://127.0.0.1:4001;app_name=test", &conn);

In this example, a connection via the TCP/IP protocol with the Plaza-2 router on the port 4001 initiated on the same computer and with the
application name ‘test’ created. Calling this function initializes connection object but doesn'’t lead to actual establishment of connection.

Connection is established by calling the ‘conn_open' function:

Client program interface 07.10.2024

result = cg_conn_open(conn, 0);

, where ‘conn’ — the object initialized by the ‘cg_conn_new’ function call, and 0 (as the second parameter) means absence of connection
opening call parameters.

Connection is closed by calling ‘conn_close’:

result = cg_conn_close(conn);

In this case, interaction with the Plaza-2 router is closed but the object remains initialized and may be reopened.
Object is destroyed by the ‘conn_destroy’ function:

result = cg_conn_destroy(conn);

Initialization of connection may fail when installation integrity is corrupted or when there is incorrect configuration, e.g. incorrect parameters
have been specified. In this case, the best things to do are to shutdown program and analyze the configuration.

Opening of connection may fail with an error due to different reasons, e.g. the Plaza-2 router is not ready to service incoming connections,
there is a failure in the communication channel, etc. Opening of connection should be performed in a cyclical manner since the next attempt
of opening may become successful.

Example of the described behavior:
cg_conn_t* conn;

result = cg_conn_new("p2tcp://127.0.0.1:4001;app_name=test", &conn);
if (result != CG_ERR_OK)

{
// failure of connection initialization
// further work is impossible
// report on the error and exit the program
return;
}

// initialized object conn exists in this place,
// this object may be worked with — get its status, open, close

while (haveToExit()) // main loop of the program
{
uint32_t state;
result = cg_conn_getstate(conn, &state); // get a status of connection
if (result != CG_ERR_OK) // error in getting the connection status
{
// report the error and exit the program
return;

switch (state)
{
case CG_STATE_CLOSED: // connection is closed, try to open
result = cg_conn_open(conn, 0);
// make a report in case of error
break;
case CG_STATE_ERROR: // connection is in the error state, it should be closed
result = cg_conn_close(conn);
// make a report in case of error
break;
case CG_STATE_ACTIVE: // connection is active, it may be worked with

3
L

This cycle implements correct work with connection: if connection is closed, an attempt will be made to open it; if connection went to the
error state, then it will be closed. Work with connection is performed when it is active.

This example uses the cg_conn_getstate function:

uint32_t state;
result = cg_conn_getstate(conn, &state);

This function returns the state of the initialized ‘Connection’object. Messages may be sent and received only when the corresponding
connection is in the ‘active’ state (CG_STATE_ACTIVE").

Being in the active state, the connection requires periodical calling of the event processing the ‘conn_process’ function, which performs
calling of user-defined callback functions and internal processing:

Client program interface 07.10.2024

case CG_ACTIVE:

{
result = cg_conn_process(conn, 0, 0);
if (result != CG_ERR_OK && result != CG_ERR_TIMEOUT)
// connection work is broken
result = cg_conn_close(conn);
}
break;
}

The ‘conn_process’ function uses the second parameter as a time interval in milliseconds which is the time to wait for new event to take
place within the connection framework. Awaiting the new calls, the ‘conn_process’ call is blocked. If there were no messages during the
specified time interval, the function will return the ‘CG_ERR_TIMEOUT’ value — in this case, this value is not an error indicator and may be
used, for instance, to indicate that there are no incoming messages and that program logics may pass to the next task. The third parameter
is reserved.

Attention! If the second parameter value is 0, the lock mode will be off, and CPU load may reach 100%.

1.5. Receiving data streams

Data streams are received by means of the ‘Listener’ objects. The ‘Listener’ object is created linked to connection with ‘cg_lsn_new’ call:
result = cg_lsn_new(conn, "p2repl://FORTS_TRADE_REPL", dataCB, user_data, &1lsn);

In this example, ‘Isn’ is initialized by the ‘Listener’ object, which is set for receiving of the ‘FORTS_TRADE_REPL’ data stream via the
connection conn. Messages on data updates and on other events of the stream life cycle will be passed to the user-defined ‘dataCB’
callback function. When creating a subscription, it is possible to set different parameters including the client replication scheme; in this case,
initialization of the object will be performed in the following way:

result = cg_lsn_new(conn,
"p2repl://FORTS_TRADE_REPL; scheme=|FILE|ini/trades.ini|TRADES",
dataCB, user_data, &lsn);

, where the scheme description file path and the section name of the corresponding ini-file are set in the ‘scheme’ parameter by the string
of a special format.

Upon successful calling of the ‘cg_Isn_new’ function, the object goes into the initialized but non-active state. In fact, the stream is opened
by calling the ‘cg_lsn_open’ function:

result = cg_lsn_open(lsn, 0);

In this example, the data stream is opened without parameters, which means that it will be opened with default parameters:
» number of the data scheme life is not set (equal to 0)

* revisions of all tables are equal to 0 which means that they will be received anew

« replication mode is selected as snapshot+online which leads to receiving of tables snapshot (or their full history) and then switching to
online data receiving

Parameters are specified as a string:
result = cg_lsn_open(lsn, "mode=online");

In this case, the stream will be opened on the online mode which skips the initial snapshot stage. In the online mode, if connection is lost, data
stream continuity will not be guaranteed. See description of the ‘cg_lsn_open’ function for detailed information on supported parameters.

The ‘cg_Isn_open’ function may return the error code in different cases: temporary unavailability of the stream, malfunction of the channel
operation. For correct operation it is required to perform cyclical opening of flows.

The stream is closed by calling the ‘cg_Isn_close’ function:
result = cg_lsn_close(1lsn);

In this case, the listener is disconnected from data receiving, and updates of this stream are no longer transmitted through the connection;
the object itself remains initialized and may be reopened, including opening with different parameters.

The object is destroyed by calling ‘cg_lIsn_destroy’:
result = cg_lsn_destroy(lsn);
After that, the ‘Isn’ object is released, and the further work with this object becomes impossible.

For correct receiving the data updates, the ‘Listener’ object must call the ‘conn_process’ function for the connection to the object it is tied
to. Data receiving frequency does not exceed the frequency of the ‘conn_process’ function calling. Therefore, in order to provide maximum

10

Client program interface 07.10.2024

data receiving speed it is required to provide maximum possible frequency of the ‘conn_process’ function calling for desired connections.
When the ‘con_process' call is absent for connection within timeout = 30 seconds time interval, the listener will be disconnected. It is not
recommended to call 'conn_process' less frequent than once per 10 seconds.

Receiving of data and occurrence of other events in the life cycle of the data stream is accompanied by calling of the user-defined ‘Isn_new’
callback function which looks like:

typedef CG_RESULT (*CG_LISTENER_CB)(cg_conn_t* conn,
cg_listener_t* listener,
struct cg_msg_t* msg,
void* data);

The following information is transferred to the callback function:

» ‘conn’ — connection the listener is tied to

* ‘listener’ — the 'Listener' object

* ‘msg’ — received message

 ‘data’ — user data which were transferred as of the moment of the ‘Isn_new’ function calling

The ‘msg’ message which is transferred to the user-defined function is generally described by the following structure:

struct cg_msg_t

{
uint32_t type; // Message type
size_t data_size; // Amount of data
void* data; // Pointer to data
}i

Any message, which is delivered to the user-defined function, has the listed fields in any case.
Particular message type is identified with the ‘type’ field analysis. The following message types are used when data stream is received:

CG_MSG_OPEN The message is delivered at the moment of data stream activation. This event surely occurs be-
fore receiving of any data on this subscription. For data streams, delivery of the message means
that the data scheme was agreed and is ready to use (for more details see Data schemes). This
message does not contain additional data, and its ‘data’ and ‘data_size’ fields are not used.

Please note, that the 'cg_pub_getscheme’, 'cg_Isn_getscheme' methods can be called only after
receiving the 'CG_MSG_OPEN'. Before that, scheme is not defined.

CG_MSG_CLOSE The message is delivered at the moment of data stream closure. Delivery of the message means
that the stream was closed by the user or the system. The 'data’ field contains pointer to 'int', the
address contains a reason for closing the listener. There may be the following reasons:

* CG_REASON_UNDEFINED - undefined;

* CG_REASON_USER - the reason is returned by user to the listener's callback;
* CG_REASON_ERROR - internal error;

* CG_REASON_DONE - 'cg_Isn_destroy' method called;

* CG_REASON_SNAPSHOT_DONE - snapshot received.

CG_MSG_TN_BEGIN Means the moment when receiving of the next data block starts. Along with the next message,
may be used by the program logic for data integrity control. This message does not contain
additional data, and its ‘data’ and ‘data_size’ fields are not used.

CG_MSG_TN_COMMIT Means the moment when receiving of the next data block is completed. By the moment this
message is delivered, it may be safely assumed that data received under this subscription are
consistent and reflect the inter-synchronized tables. This message does not contain additional
data, and its ‘data’ and ‘data_size’ fields are not used.

CG_MSG_STREAM_DATA The message indicating delivery of stream data. The ‘data_size’ field contains the amount of
data received; ‘data’ indicates the data themselves. The message itself contains additional fields
which are described by the ‘cg_msg_streamdata_t' structure. See the information presented
below in this section for more details on data receiving.

CG_MSG_P2REPL_ONLINE Stream switching to the online mode — it means that receiving of the initial snapshot was com-
pleted, and the ‘CG_MSG_STREAM_DATA' messages below will bear online data. This mes-
sage does not contain additional data, and its ‘data’ and ‘data_size’ fields are not used.

CG_MSG_P2REPL_LIFENUM The scheme life number was changed. This message means that previous data, which were re-
ceived regarding the stream are not up-to-date and should be deleted. This will be accompanied

11

Client program interface 07.10.2024

CG_MSG_P2REPL_CLEARDELETED

CG_MSG_P2REPL_REPLSTATE

by retranslation of data on the new data scheme life number. The ‘data’ field of the message
indicates an integer value containing the new scheme life number; the ‘data_size’ field indicates
the size of the integral type. For more information about processing of scheme’s life number see
the end of this section.

Mass deletion of outdated data was performed. The ‘data’ field of the message indicates the
‘cg_data_cleardeleted_t’ structure, which indicates the number of table and the number of re-
vision — data in this table issued prior to this revision are deemed to be deleted. If revision
number cg_data_cleardeleted_t == CG_MAX_REVISON, then the next revision numbers will
continue from 1.

The message indicates the state of data stream; it is sent before closure of the stream. The ‘data’
field of the message indicates the line, which indicates the encoded state of the data stream
as of the moment the message is delivered — the data scheme, table revision numbers and
the scheme life number are saved as for the time of receiving the last 'CG_MSG_TN_COMMIT'
message (please note, that if you reopened the 'replstate’ stream, all revisions received after
the last 'CG_MSG_TN_COMMIT' message will be resend again!) This line may be transferred
for calling of the cg_Isn_o